
MASSACHUSETTS INSTCIThE
OF TECHNOLOGY

Super-Efficient Rational Proofs

by

Pablo Daniel Azar LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
Author

Department of Electrical Engineeri omputer Science

August 12, 2014

Signature redacted

Certified by
Silvio Micali

Professor of Computer Science
Thesis Supervisor

Signature redacted
Accepted by

Leglie 6/ (O)lodziejski
Chair, Department Committee on Graduate Theses

2

Super-Efficient Rational Proofs

by

Pablo Daniel Azar

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Information asymmetry is a central problem in both computer science and economics.
In many fundamental problems, an uninformed principal wants to obtain some knowl-
edge from an untrusted expert. This models several real-world situations, such as a
manager's relation with her employees, or the delegation of computational tasks to
workers over the internet.

Because the expert is untrusted, the principal needs some guarantee that the
provided knowledge is correct. In computer science, this guarantee is usually provided
via a proof, which the principal can verify. Thus, a dishonest expert will always get
caught and penalized. In many economic settings, the guarantee that the knowledge
is correct is usually provided via incentives. That is, a game is played between expert
and principal such that the expert maximizes her utility by being honest.

A rational proof is an interactive proof where the prover, Merlin, is neither honest
nor malicious, but rational. That is, Merlin acts in order to maximize his own utility.
I previously introduced and studied Rational Proofs when the verifier, Arthur, is a
probabilistic polynomial-time machine [3].

In this thesis, I characterize super-efficient rational proofs, that is, rational proofs
where Arthur runs in logarithmic time. These new rational proofs are very practical.
Not only are they much faster than their classical analogues, but they also provide
very tangible incentives for the expert to be honest. Arthur only needs a polynomial-
size budget, yet he can penalize Merlin by a large quantity if he deviates from the
truth.

Thesis Supervisor: Silvio Micali
Title: Professor of Computer Science

3

4

Acknowledgments

So many people helped me during my time at MIT CSAIL. I am grateful to Chuck,

Nina, JoAnne, Be, Holly and Linda for helping me navigate the administrative side

of CSAIL and the EECS department, as well as for providing an endless supply of

candy to fuel the writing of this thesis.

I am grateful to my advisor Silvio Micali for helping me to develop my problem

solving skills, in all areas of life.

I am grateful to Shafi Goldwasser and Andrew Lo, who together with Silvio formed

my thesis comittee, and supported me in both good times and bad times.

I am grateful to my family, Hector, Sara, Gie, Lisa, Jose, Deborah and Jasper,

without whose encouragement and support this work would not be possible.

And most of all, I am grateful to my wonderful wife, Stephanie Liem Azar, whose

endless supply of love, encouragement, jokes you cannot put in a thesis acknowledge-

ment section, passion and laughter were the true fuel for this thesis and beyond.

5

6

Contents

1 Introduction 9

2 Related Work 13

3 Preliminaries 19

4 Rational Proof Characterization of TC 25

5 Rational Proof Characterization of P|INP 33

6 Rational Proof Characterization of pujMA 41

7 Conclusion 45

7

8

Chapter 1

Introduction

Exchanging knowledge for money is central in a market economy. Two concrete

examples of knowledge being sold are Amazon's Mechanical Turk, where individuals

are paid to solve problems that are impractical to automate, and cloud computing

where computational resources are rented from far away servers. In order to fully

understand the potential of these markets, we need to develop a theory of delegation

of computation to rational agents.

A classical way to delegate computation is by using interactive proofs [5] [19]. An

interactive proof system guarantees that (1) there is a way for a prover (colorfully

called Merlin) to convince a skeptical verifier (colorfully called Arthur) that a theorem

is true, but (2) there is no way (with overwhelming probability) to convince Arthur

that a false theorem is true. Accordingly, Arthur can agree to pay Merlin a fixed

amount of money (e.g., a thousand dollars) if Merlin manages to convince him that

a given computation is correct, and zero dollars otherwise. Interactive proofs can be

much faster than traditional proofs which use no interaction. Unfortunately, they are

not always as efficient as we would like them to be. This is so because Arthur needs

to verify whether Merlin is being honest or dishonest.

Rational proofs [3] are an alternative to interactive proofs where Merlin is neither

honest nor arbitrarily malicious. Instead, he is economically motivated and seeks

to maximize a monetary reward. Thus, a rational proof system needs to ensure

that Merlin maximizes this reward if and only if he honestly reports the correct

9

answer to Arthur's problem. In such proofs, even though Arthur cannot run the

computation himself and cannot even verify whether the provided result is correct,

he can surprisingly come up with an easy to evaluate reward function-to be evaluated

on Merlin's answer-that is only maximized by Merlin whenever he gives a correct

answer.

By considering rational provers, we can significantly improve the efficiency of

interactive proofs. Indeed, in this thesis, we present new rational proofs with two

strong properties

1. Super-Efficiency. Most of the proofs in this thesis involve a logarithmic time

verifier. Furthermore, our super-efficient rational proofs are prover feasible [24].

That is, all provers (including unbounded ones) are incentivized to give an

honest answer and the amount of computation required by an honest prover is

no larger than the amount required to solve the problem at hand.

2. Bounded Budget. All the rational proofs we present (1) enable Arthur to reward

Merlin with a polynomial (in the input length) budget and (2) ensure that

Merlin suffers polynomial losses from giving a wrong answer. This gives Merlin

very strong incentives to be truthful, and is an improvement over previous

rational proofs where Merlin would only lose an exponentially small amount if

he deviated from the truth.

Budgets are important when Merlin has costly computation. In particular, assume

that every computational step in an algorithm costs Merlin $1. If Merlin can run said

algorithm in a polynomial number of steps (say n' where n is the size of the algorithm's

input), his total cost would be $nc. If Merlin does not get compensated for his costs,

then he could presumably make a larger profit by giving a default answer that does

not cost him anything to compute, such as 0. By giving this answer, he gets some

reward and does not have to pay any computational cost. Thus, a properly structured

rational proof with polynomial budget must make the difference in reward between

a correct answer and an incorrect answer larger than Merlin's computational cost of

computing the right answer.

10

Super-efficiency is also important, as we want to make the verifier exert as lit-

tle effort as possible. Even when Merlin is a polynomial-time machine, he can still

solve problems that a super-efficient Arthur running in logarithmic time cannot solve.

For many problems we study in this thesis, there is no known classical proof where

Arthur runs in O(log n) time. However, even when Arthur can run polynomial time

algorithms, it is possible that Merlin holds a "trade secret" that allows him to solve

problems than Arthur cannot solve. For example, Merlin may have a quantum com-

puter which allows him to factor numbers. Another example is that Merlin may have

found an algorithm for the graph non-isomorphism problem. Instead of revealing

his algorithm in full, Merlin can sell his knowledge as a service to Arthur using a

rational proof. We remark that for these two problems (factoring and graph non-

isomorphism), there exist classical interactive proofs which allow Merlin to convince

Arthur that his work is correct. However, these proofs require Arthur to use polyno-

mial time to verify the proofs. As mentioned before, all our rational proofs (including

for NP and co-NP problems) only require Arthur to use O(logn) time to compute

Merlin's reward.

Our Results In this thesis we study rational proofs where Arthur only uses

O(log n) time and Merlin's reward sensitivity is polynomial in n, where n is the size of

the input. This allows us to work in a setting where all possible losses from deviating

from the truth are larger than $1000, and where Arthur's budget is a polynomial

function p(n) of the problem size n.1

We focus on three complexity classes:

" Uniform TCO. This class is powerful enough to include all multi-variable ratio-

nal functions of constant degree [20]. More formally, it is the set of languages

decidable by uniform, polynomial-size, constant-depth threshold circuit families.

* PINP. Finding the largest clique in a graph, finding the maximum number of

satisfying assignments in a boolean formula, and finding the maximum of an

'Note that, if we scale rewards by a large enough polynomial factor q(n), we can make Merlin's
losses from lying as large as $1000q(n), while still keeping Arthur's budget polynomial in n. For
convenience of notation, we will in most cases normalize the budget so that Merlin loses at least
$1000 when he is dishonest.

11

arbitrary function f : {0, } - {..., n()} can be reduced to decision

problems in P1INP. More formally, this class is the set of languages decidable by

a polynomial time machine that can make parallel queries to an NP oracle.

Let us emphasize that this class also includes all problems in co-NP, which do

not admit constant-round classical interactive proofs even when Arthur is allowed

to use polynomial time.2 In contrast, the rational proofs that we give for this

class, will always have a single round of interaction.

0 pIMA. This is the analogue of pIINP where instead of making queries to an NP

oracle, we can make queries to an even "more powerful" oracle.

In particular, we prove that

1. Uniform TC0 coincides with the set of languages L that admit a rational proof

with an O(log n)-time Arthur, O(log n) communication, a constant number of

rounds and a polynomial-size budget.

2. pIINP coincides with the set of languages having a rational proof with an O(log n)-

time Arthur, poly(n) communication, one round, and a polynomial-size budget.

3. pUjMA coincides with the set of languages having a rational proof with a poly-time

Arthur, poly(n) communication, one round, and a polynomial-size budget.

Remarks When Arthur has logarithmic time, he can only query a few bits of Mer-

lin's messages via random access. This is the same model of interaction as that given

in Probabilistically Checkable Proofs (PCPs). Our second result thus says that "ra-

tional PCPs" can be much more efficient than traditional PCPs. Indeed, in classical

PCPs the verifier -although reading very few of the bits transmitted by the prover-

runs in time at least linear in n, whereas our verifier runs in time O(log n).

Our third result gives a limit on the power of polynomial budget rational proofs,

and makes explicit the intuition that, in order to give rational proofs for #P or

higher classes one needs an exponential budget (under standard complexity theoretic

assumptions).

2More precisely, if co-NP admitted constant round interactive proofs, the polynomial hierarchy
would collapse. This is not believed to be true under standard complexity theoretic assumptions.

12

Chapter 2

Related Work

Rational Proofs for high complexity classes A previous paper [3] introduced

rational proofs and showed that the complexity class #P admitted one-round rational

proofs. We also showed that the languages admitting constant round rational proofs

are exactly those in the counting hierarchy CH. In this thesis, I extend these previous

results by giving characterizations of (relatively) lower complexity classes such as TCO,

pINP and pIIMA. Our previous rational proofs for CH required Merlin to be sensitive

to exponentially small losses in reward, and they required Arthur to be a polynomial

time machine. In contrast, the new rational proofs that I present in this thesis only

require Merlin to be sensitive to polynomially large differences in reward, and (for

TCO and PINP) only require Arthur to do logarithmic time computations.

Interactive Proofs Interactive Proofs were introduced by Goldwasser, Micali and

Rackoff [19] and by Babai and Moran [5], from whom we have borrowed the Arthur-

Merlin terminology. In both these papers, Arthur is assumed to be a polynomial time

machine. Many ways of weakening Arthur's computational requirements have been

considered, including, but not limited to, the work of Dwork and Stockmeyer [13][14],

who have studied interactive proofs with verifiers that are probabilistic finite state

automata, and the work of Condon and Lipton [111], who study interactive proofs for

space bounded verifiers.

A closer point of comparison for our proofs of circuit evaluation are Goldwasser,

13

Kalai, and Rothblum's notions and techniques for interactive proofs for muggles. [27].

Their main result gives interactive proofs for uniform NC circuits of size S(n) and

depth d(n), where the verifier acts in time (n + d(n)) -polylog(S(n)) and the prover

acts in time poly(S(n)). In contrast, by switching to a rational model, we can give

interactive proofs for more general uniform TC circuits, and reduce the verifier time

to O(d(n) log(n)).

For the rational proof characterization of PINP, the relevant point of comparison is

the literature on probabilistically checkable proofs (PCPs) [1][16][21, and holographic

proofs [4]. Here, in essence, to prove that an n-bit string x belongs to an NP language

L, the prover provides the verifier with a poly(n) bit string, which is sampled at a

constant number of locations by a verifier who then performs a polynomial time

computation.1 As already mentioned in the introduction, in our case, Arthur not

only reads only O(log n) bits, but also performs only O(log n) computation.

There are other alternative models of PCPs which have weak verifiers. Batu,

Rubinfeld and White [8] and Ergun, Kumar and Rubinfeld [15] study a variant of

PCPs, where the solutions to the given problems are only approximate solutions. In

this setting, and for many problems of interest, they give PCPs which can be verified

in polylogarithmic time.

In addition, the notion of committing the computation of a circuit, and then allow-

ing the verifier to locally de-commit and check it, is deeply rooted in the cryptographic

literature. In particular, CS Proofs [21, 24] present a variant of this approach that

allows for just a logarithmic amount of communication, but still requiring a polyno-

mial amount of computation from the verifier. We also remark that, by switching to

the rational model, we do not need to make any cryptographic assumptions.

Optimization Problems One of the main results in this thesis is a characterization

of P1INP in terms of super-efficient rational proofs. There are other characterizations

of p|INP, especially in terms of optimization problems. First, we remark that it is

well known that pIINP = pNP[O(logn)], the class of languages decidable in polynomial

'It is important that this polynomial only depends on the input size |xi, but not on the language
L for which the proof is given.

14

time with O(log n) queries to an NP oracle. Furthermore, Krentel [23] shows that

the corresponding function class FpNP[O(ogn) is equal to OptP[O(logn)] = {y(-) :

y(x) = argmaxy f(x, y) where f(x, y) is computable in polynomial time and can be

written with z(Ix) bits}. That is, for any function g(x) E FPNP[O(logn)], there exists

another function f(x, y) computable in polynomial time and taking polynomially

many different values such that g(x) = argmax, f(X, y).

One immediate consequence of this characterization of

FpNP[O(ogn)] is that we can give the following informal rational proof for it. Given a

function g which we want to evaluate on input x, ask Merlin for a value y, allegedly

equal to g(x). In order to incentivize Merlin to give the correct answer, give him a

reward equal to f(x, y). This is a rational proof with polynomial budget, and can be

used to give polynomial budget rational proofs for pIINP. However, it is not super-

efficient. Arthur needs to evaluate the function f(x, y), which can take polynomial

time. While the above rational proof is simple, and recasts optimization problems as

a tool to obtain trust from incentives, we also give a more sophisticated rational proof

for pIINP, one which only requires Arthur to act in logarithmic time, an exponential

savings in verifier time.

Game-Theoretic Characterizations of Complexity Classes Rational proofs

are not the first characterization of complexity classes in terms of the actions of

economic agents. Most of the existing work focuses on the complexity of finding

properties of games with two or more players, each of whom has at least polynomial

time to act. In contrast, the results in this thesis focus on an honest logarithmic

time referee (Arthur) who interacts with a single utility-maximizing agent (Merlin).

Furthermore, and to the best of my knowledge, these results are the first to give game-

theoretic characterizations of "low" complexity classes such as TC0 . In the following

paragraphs, we give a brief (and by no means exhaustive) summary of work in this

area.

The idea of a referee interacting with utility-maximizing players has been explored

by Feige and Kilian [17]. They define the class RG(k) of languages that can be decided

15

by a polynomial-time verifier who "pits two experts against each other." That is, one

prover is honest, the other one is dishonest, and the referee needs to determine which

one's which. This can be interpreted as deciding which player is the winner in a

zero-sum game with k rounds.

Kol and Raz [22] combine the refereed games framework with interactive proofs

for muggles. That is, they give two-prover proofs for circuits and delegation of com-

putation, where one prover is honest and the other one dishonest. Their results imply

that for a uniform NC circuit of depth d and size S, one can give an interactive proof

with r rounds where the verifier complexity is dpolylog(S).

Feigenbaum, Koller and Shor [181 give a framework to characterize complexity

classes based on two-player games with imperfect information and imperfect recall.

They show that languages in EXP and co-NEXP can be characterized as games

where players have imperfect information (and one player has imperfect recall). They

also apply their framework to characterizations of PSPACE in terms of games.

As mentioned above, all of the work on refereed games and debates involves a ref-

eree encouraging two expert to participate in a zero-sum game, whereas the rational

proofs model concerns only one expert. A closer point of comparison is Papadim-

itriou's characterization of PSPACE in terms of games against nature [25]. He intro-

duces the problem of stochastic satisfiability, where a player and "nature" alternate

assigning boolean variables in a random formula (with the player seeking to make the

formula satisfied), and shows that this problem is PSPACE-complete.

One can also give game-theoretic characterizations of complexity classes in terms

of properties of non-zero sum games. Schoenebeck and Vadhan [26 give characteriza-

tions of P#P, co-NP#P and co-NP in terms of deciding whether a profile of strategies

is an exact equilibria in games defined by succinct boolean circuits. The problem of

deciding whether a profile of strategies is an approximate Nash equilibrium character-

izes classes such as PPP and co-NPBPP. Other game-theoretic problems on concise

games characterize different classes such as NEXP and MA. We refer the reader to

their work for more details. Daskalakis, Goldberg and Papadimitriou [12] show that

finding an &Nash equilibrium on graphical games with 4 players is complete for the

16

complexity class PPAD. Chen and Deng [10] extend this result to graphical games

with 2 players.

17

18

Chapter 3

Preliminaries

Strings and Circuits Given a string x e {0, 1}*, IxI represents the description

length of x. A circuit family {C,,}' 1 is a sequence of boolean circuits such that

Cn : {0,1} 1 { +0, 1}.

DLOGTIME Uniformity Because Arthur will be computationally limited, he

may not be able to handle arbitrary non-uniform circuits. This is why we will re-

quire our circuits families to be uniform. Traditionally, a circuit family is said to be

DLOGTIME-uniform if the connection language

{(1, g, h, i) :h is the ith input gate to g in Cn}U{(1",g,t) : g is a gate of type t in C}

is decidable in logarithmic time [7]. This is a decision version of uniformity. We will

use a search variant of this definition, that enables us to make our results tight. (For

notational convenience we actually treat output and input wires as gates, so that all

wires run from gates to gates. A gate representing the ith input xi takes no arguments

and produces the output xi.)

Definition 1. Let t : N -+ N be a time-constructible function. A circuit family

{Cn}* 1 is t(n)-search uniform if there exists a Turing Machine M running in time

t(n) such that

o On input (1n, OUTPUT), M outputs a pointer to the output gate of CA.

19

e On input (1n, g, i), where g is a pointer to a gate and i is an integer, M outputs

a pointer to the ith input of gate g.

& On input (1n, g), where g is a pointer to a gate, M outputs the type of gate g.

The types of possible gates are AND, OR, NOT, THRESHOLD and INPUT.

Furthermore, if g is an input gate then M outputs which input xi it corresponds

to.

We denote by Search - Uniform - TCd the class of

DLOGTIME-Search-Uniform threshold circuits of depth d and by Search-Uniform-

TC0 the class of DLOGTIME-Search-Uniform threshold circuits of constant depth.

Rational Proofs for Circuits Given an input x of length n, and a circuit C :

{0, 1} -+ {0, 1}, we can define a rational proof that C(x) = y. Informally, Arthur

and Merlin perform several rounds of interaction. After this interaction is complete,

Arthur should be able to

1. Quickly compute the value of C(x).

2. Quickly compute a reward R(x, T) for Merlin which depends on the input x,

and the transcript T from Merlin and Arthur's communication.

Merlin should be incentivized to always act truthfully. That is, if the protocol up

to round k has followed a truthful execution, then Merlin will maximize his expected

reward in the future by following the protocol truthfully at round k + 1.

More formally, we can define Interactive Protocols and

resource-bounded rational interactive proofs as follows.

Definition 2 (Interactive Protocols). A k-round interactive protocol consists of two

randomized functions P, V : {0, 1}* -+ {0, 1}*. Given an input x and a round i,

they define the transcript Ti, the prover's view P, the verifier's view Vi, the prover's

message a, and the verifier's message bi as follows:

Set To,VPo ={x}. Then, for i= 1 to k,

20

Pi = (Pi- 1, -1, ri), where ri is a sequence of random coin tosses, and a, A

P(P).

* V, A (Vi-1, R-1, si, ad), where si is a sequence of random coin tosses, and b, A

V(V).

* T A (T-_, ai, bi).

We use the term honest transcript of (P, V) on input x for any Tk computed using

this protocol on input x.

The protocol is public-coin if, for every round i, Arthur's message bi at round i

consists of just his random coins si. Given fixed coin tosses b = (b1 , ... , bk), and an

arbitrary prover P', we define the transcript generated by P' and b to be

T(P', b) = (P'(x), bi,P'(x, bl),..., P(x, P'(x),..., bk_1))

Definition 3 (Rational Interactive Proof). Let

t, cc, rc, b : {0, 1}* -+ N be non-decreasing functions. A circuit family {Cn}nEN has

a rational interactive proof with time complexity t, communication complexity cc,

round complexity rc, and budget b (for short, a (t,cc,rc,b)-Rational Interactive Proof)

if there exists a public coin interactive protocol (P, V), a reward function R(-,-) and

a predicate 7r(-,-) such that, for every input x

* The verifier is a machine that makes at most t(Ix) computational steps in each

round.

" The number of bits exchanged in each round is at most cc(jx|).

* The number of rounds is k = rc(Ix I).

" The reward R(x, T) and the predicate 7r(x, T) can be computed in time k -t(Ix|).

* If Tk is an honest transcript given P, V and x, then 7r(x, T) = C,(x).

21

. Given a prover P', the expected reward of P',

R(x, P') =Eb[R(x, T(P', b))],

is an integer in [0,b(Ix|1|.

* For any P' 4 P, we have R(x, P) - R(x, P') > 1000.

Our first four conditions require that a rational proof has limited time complexity,

communication complexity, and

round complexity. The fifth condition ensures that an honest transcript will always

help the verifier decide the underlying language L correctly. The sixth condition

ensures not only that all expected rewards are integers (which can always be done by

multiplying any rational reward by a large enough number) but also that they are

bounded by the budget function b(IxI). Unless specified otherwise, the budget that

we use in our results is polynomial in IxI. Our last condition ensures that honesty is

by far the only rational behavior. If Merlin deviates from the honest protocol P and

instead acts like a dishonest prover P', then he expects to lose at least $1000. We

remark that this quantity can be an arbitrary polynomial q(jxl), while still keeping a

polynomial budget.

Definition 4 (DRMA (t,cc,rc,b)). Let t, cc, rc, b be as in the definition above. The set

of all languages which admit a (t, cc, rc, b)-rational interactive proof with public coins is

called DRMA(t, cc, rc, b). For most results in this thesis, the budget b(n) will be a poly-

nomial function of the input size n. Thus, we will often write DRMA(t, cc, rc,poly(n))

as DRMA(t, cc, rc) and assume implicitly in this notation that Arthur's budget is poly-

nomial.

Proper Scoring Rules Let Q be a finite state space, and A(Q) be the set of

distributions over Q. A scoring rule is a function S : A(Q) x 0 -+ R. Such a function

can be interpreted as a reward that the expert obtains for reporting a probabilistic

prediction P when the realized state of the world turns out to be w. The scoring rule

22

S is strictly proper if the expert strictly maximizes her reward by announcing the true

distribution V. That is, D = argmax, E,,D[S(P, w)]. A well known strictly proper

scoring rule is Brier's scoring rule

BSR(P, w) = 2P(w) - (X)2+ 1.
XEfI

Besides being strictly proper, Brier's scoring rule is always bounded in [0, 21.

23

24

Chapter 4

Rational Proof Characterization of

TC0

We first consider rational proofs with a constant number of rounds where Merlin can

only send logarithmic length messages and Arthur only has logarithmic computation.

We can prove the following theorem

Theorem 1. DRMA[O(log n), O(logn), O(1)] = Search - Uniform - TC0

We prove this theorem via two lemmas, each showing a side of the inclusion.

Lemma 1. For any constant d > 0, Search-Uniform-TC c DRMA[O(logn), O(logn), d]

Proof. First we remark that threshold gates can simulate AND and OR gates, so it

suffices to focus on circuits composed entirely of threshold gates and their negations.

Let Cn : {0, 1}" -+ {0, 1} be a uniform threshold circuit of depth d. Let Cn(x) = y.

Cn can be thought of as the composition of two circuits A o B, where A is a threshold

circuit of depth 1 and B is a multi-output threshold circuit of depth d - 1. This

allows us to use induction to prove our lemma.

First, we prove the base case: any threshold circuit Thk of depth 1 has a rational

proof with O(log n) time complexity, O(log n) communication complexity, one round,

and budget 0(n2). It suffices, in order to evaluate Thk(X1, ..., X), to know how many

input bits are equal to 1. Arthur can incentivize Merlin to reveal this count by using

a proper scoring rule. The rational proof proceeds as follows

25

1. Merlin announces a probability distribution Y over the domain {0, 1}, with

Prob[Y = 1] E z [o, 1].

2. Arthur draws an index r <- {1,..., n} at random, and looks at the input bit x,.

He rewards Merlin using Brier's scoring rule BSR(Y, x,.).

3. If n - Prob[Y = 1] > k, then Arthur outputs 1. Otherwise, Arthur outputs 0. '

Because Arthur draws x, at random from {X1, ... , X1 } and uses a strictly proper

scoring rule to compute Merlin's reward, Merlin is incentivized to report Y such

that Pr[Y = 1] = #t . The proof obviously proceeds in one round, and Merlinn

needs log n bits to communicate the distribution Y. So now all we need to show is

that Arthur uses O(logn) computation and can communicate Merlin's reward using

O(log n) bits. Note that BSR(Y, x,) = 2-Pr[Y = x,]-(Pr[Y = 1]2 +Pr[Y = 012)+1,

and that both Pr[Y = 0] and Pr[Y = 1] are log n-bit numbers. Thus, the reward

itself is an O(log n) bit number and can be computed in time O(log n-log log n), which

is the time required to square a log n-bit number.

We can improve this running time to O(log n) by using a randomized version of

Brier's scoring rule. This randomized version is computed by the following procedure

1. Merlin announces a distribution Y over {0, 1}, where Pr[Y = 11 E .

2. Arthur randomly samples a y +- Y.

3. Arthur randomly samples X, +- {X1, ...,Xn}.

4. Arthur gives Merlin a reward equal to 2Pr[Y = x,] - Pr[Y = yj+ 1.

Notice that Arthur can sample y +- Y in time O(logn) by choosing a number k +-

{1, ..., n} and setting y = 1 if k; Pr[Y = 1] and y = 0 otherwise. He can sample x,

in time O(log n) (by uniformity of the given circuit), and he can compute the reward

in time O(log n) because he is adding log n-bit numbers. Notice furthermore, that

E,+-y[2Pr[Y = xr] - Pr[Y = y] + 1] =

'If instead we want to evaluate -,Thk(XI, .X), Arthur outputs 0 when n -Prob[Y = 11 > k and
1 otherwise.

26

2Pr[Y = xr] - (Pr[Y = 0]2 + Pr[Y = 12) + 1

so Merlin's expected reward (where the expectation is taken over Arthur's random

choice of y) is exactly equal to BSR(Y x,). Thus, Merlin is still incentivized to

strictly announce Pr[Y = 1] = " .n

Finally, note that the budget from this rational proof is O(n2). Merlin's expected

reward from announcing Y is

Pr[x, = 1] -BSR(Y, 1) + Pr[xr = 01 -BSR(Y, 0) =

2Pr[x. = 1]Pr[Y = 1] + 2Pr[x, = 0]Pr[Y = 0]-

-(Pr[Y = 0]2 + Pr[Y = 1]2) + 1.

Since all the probabilities are integer multiples of , Merlin's expected reward is

always an integer multiple of i. By multiplying all rewards by 1000n 2 , Arthur can

guarantee that if Merlin deviates from the truth, he will always receive a penalty of

at least $1000 in his reward.

This proves the base case of the induction. To prove the inductive step, as-

sume that we have shown that, for circuits of depth d - 1, there exist rational

proofs with 0((d - 1) logn) time and communication complexity, d - 1 rounds and

b(n) = O(n2(d-1)) budget. By shrinking rewards appropriately, we can assume that

the reward for any d - 1 rational proof with budget b(n) is in [0, 1] and Merlin loses

at least 1 by deviating from the honest protocol.

Decompose circuit C, of depth d into the composition A oB where A is a threshold

circuit of depth 1 and B is a multi-output threshold circuit of depth d - 1. Let B,(x)

be the it" output of B. The proof proceeds as follows

1. Merlin announces a distribution Y, allegedly satisfying Pr[Y = 1} = Pr[B,(x) =

11.

2. Arthur chooses one input to A at random using the uniformity of the circuit.

Let's say input r. He needs to compute B,(x), which he does by using a d - 1-

27

round rational proof, since B, has depth d - 1. Let R and 7r be the reward

and output functions associated with this d - 1 rational proof, and let T be the

transcript.

3. Arthur gives Merlin an extra reward of Jd - BSR(Y, B,(x)), where 6d is a scaling

factor which only depends on d, and is defined below.

4. If Merlin is truthful, Arthur can use the announced distribution Y to compute

n - Pr[Y = 1] = #{i: B4(x) = 1}, and using this number Arthur can compute

A(B(x)).

First, note that the number of rounds in this protocol is d: there are d - 1

rounds to compute B,(x), and 1 round to compute A(B(x)). Furthermore, Arthur

only adds O(logn) computation steps, the ones he needs to pick the random index

r, to compute BSR(Y, B,(x)), 2 and to compute A(B(x)) from the distribution Y.

Finally, the communication complexity increases by O(logn), the amount needed to

communicate the distribution Y and the reward BSR(Y, B,(x)).

Now we need to show that Merlin has the right incentives to tell the truth.

Note that, because we are interacting with Merlin multiple times, there is a dy-

namic incentive compatibility problem. The only reason that Arthur knows the value

of B,(x) is because Merlin told him this value with a d - 1 round rational proof.

For this information, Merlin receives an expected reward E-r[R(x, T)] where T is

the transcript of the interaction and the expectation is taken over Arthur's coin

tosses. Merlin maximizes this reward by following the protocol honestly and pro-

ducing a transcript T compatible with the true value B,(x). Thus, if Merlin's only

reward was R(x, T), he would correctly report B,(x). However, Merlin's total re-

ward is R(x, T) + 5dBSR(Y, B,(x)). It is possible that Merlin is willing to deviate

at some point and produce a dishonest transcript of T' together with a dishonest

B'(x) because it would increase his reward from E,[BSR(Y, B,(x))] to some higher

E,[BSR(Y, B'(x))]. To prevent Merlin from doing this, we need to guarantee that

Er[6d(BSR(Y B'(x)) - BSR(Y, B,(x)))] < Er[R(x, T)] - Er-[R(x, T')]. That is, any

2Again, using the randomized version of Brier's scoring rule.

28

gains that Merlin obtains from reporting the fake value B,.(x) are offset by losses that

he gets by generating a corresponding dishonest transcript T'.

Recall that the budget function b(n) satisfies E-r,-ri [R(x,7) - R(x, T')] >

where the expectation is taken with respect to Arthur's random coin tosses in the

transcripts, and that by inductive hypothesis b(n) = 0(n2(d-1)). Recall also that

BSR(., -) E [0, 2] and thus BSR(Y, B'(x)) - BSR(Y, B,(x)) < 2. Thus, if we set 6d =

1
2.() we will have E, [6d(BSR(Y, B'(x)) - BSR(Y, B,(x)))] ; - < Er[R(x, T)] -

Er, [R(x, T')]. This implies that Merlin strictly maximizes his reward by reporting

both T and Y honestly.

Finally, we need to show that Arthur's budget is 0(n2d). Note that Merlin's ex-

pected reward is E,[1BSR(Y, B,.(x))]+ET[R(x, T)]. If Merlin deviates and produces

an alternative dishonest transcript (T', Y'), his expected reward is Er,['BSR(B(x), Y')]+

E-r [R(x, T')]. The difference in rewards is E,[g(BSR(Y B,(x)) - BSR(B,(x), Y'))]+

(Er[R(x, T)] - ETrR(x, T')]). Note that, since (T, Y) / (T', Y'), both terms can-

not be zero simultaneously.3 The first difference satisfies Er[' (BSR(Y, B,(x)) -

BSR(B., Y')] E Z. If T = T', the second difference satisfies E7r[R(x, T) -

E-r- [R(x, T')] > y. Multiplying the reward by 2000b(n) - n2 , we get that the loss

that Merlin gets by producing a dishonest transcript (T', Y') is always greater than

1000. Since 2000b(n) -n2 0(2(d-1) . n2) = 0(n2d), we conclude that our rational

proof's budget is 0(n2d).

Thus, we have shown that depth d threshold circuits admit rational proofs with

O(d - log n) communication and time complexity, that these proofs can be completed

in d rounds, and that they can be done with an 0(n2d) budget. Q.E.D.

Lemma 2. DRMA[O(logn),O(logn),O(1)] C

Search - Uniform - TCO

Proof. We prove this by induction. We begin with the case d = 1. In this case, we

want to show that rational proofs with log n bits of communication and with one

round can be simulated by a DLOGTIME-search-uniform circuit in TCO.

3 Otherwise, the dishonest transcript (T', Y') would maximize Merlin's reward.

29

Let L be a language that can be decided with a d-round rational proof that

uses k(n) = O(logn) communication and time complexity per round. The tran-

script T of this interaction is (a,, b1, ... , ad, bd) where a, is Merlin's message in round

i and bi consists of Arthur's random coins in that round. In round i, Merlin chooses

a.(ai, bi, ... , aj 1 , bj 1) as a function of the transcript up to that round in order to

maximize

V(ai; a,,..., bi_,)=

max .. max E R(x, (a,, bi, ..., ad, bd)).
biE{0,1}k(n) b1+i

A threshold circuit can reconstruct Merlin's choices by doing backwards induction.

Given as input a transcript

a1, , ad_, bd-1 of the interaction up to round d-1, a uniform threshold circuit of con-

stant depth can compute maxdd Ebd R(x, (a1,..., ad, bd)) and choose the input a* that

maximizes this expected reward. Similarly, when given as input the transcript 'Ti- up

to round i - 1, a depth O(d - i) circuit can compute ai' = argmaxa V(ai; a1, ... , bi_ 1).

Thus, we can reconstruct Merlin's choices using a uniform threshold circuit of depth

O(d). Given the input x to the rational proof, the circuit first computes Merlin's

action

a* = argmax max... E R(x, (ai, bi, ... , ad, bd)).
al b bd

Because each message a, or bi is restricted to be of length O(log n), every MAX gate

is taking the maximum of poly(n) numbers and every SUM gate is taking the sum

of poly(n) numbers. Furthermore, all numbers have poly(n) bits.4 Thus, this can be

computed using a search-uniform threshold circuit of polynomial size and depth d.5

Merlin then tosses 0(log n) random coins to choose b* and computes a;(a*, bt), which

again can be computed with a polynomial size threshold circuit of depth d. Continuing

with this procedure, we can reproduce an honest transcript T = (a*, b*, a;,..., a* , b*)

4Each R(x, T) must be computed in time O(log n) and hence has O(log n) bits. The addition of
poly(n) such numbers will be a poly(n)-bit number.

5The only operations we use are iterated addition and taking maxima. For both these operations,
one can construct threshold circuits where the ith input to an arbitrary gate g can be computed in
logarithmic time. See [9] for a description of such circuits.

30

with a circuit of depth 0(d). Finally, given T, we can compute the output 7r(x, T)

of the rational proof in time 0(logn), and hence in TCO.

This shows that any language decidable by a d-round rational proof with 0(log n)

communication per round is decidable by a search-uniform threshold circuit of depth

0(d2). Q.E.D.

Remark Our proof also applies to circuits with non-constant depth d(n), as long as

Arthur only performs 0(log n) computation per round, and communication is limited

to 0(log n) bits per round. In this case, a d(n)-round rational proof with budget

0(n'(")) can be given for any threshold circuit of depth d(n). Furthermore, any d(n)

round proof can be simulated by a circuit of depth 0(d2 (n)).

31

32

Chapter 5

Rational Proof Characterization of

pIINP

In this chapter, we study a rational analogue of Probabilistically Checkable Proofs

(PCPs). We show that the set of languages for which there exists a rational proof

with O(logn) verification time, poly(n) communication and 1 round is exactly pINP,

the set of languages that can be decided by a polynomial time machine that can make

non-adaptive queries to NP.

In addition, while in Theorem 1 we prove our results for search-uniform circuits,

in this theorem our proof will actually hold for the decision version of uniformity.

Nevertheless, our proof will proceed as if our circuits were search-uniform until the

very end, when we explain how to modify it for decision-uniform circuits.

Theorem 2. DRMA[log(n), poly(n), 11 = PI|NP.

Proof. We will first show a rational proof for any language in P. Combining this with

a rational proof for SAT, we will show how to obtain such proofs for any language in

pIINP.

Let {C}', be a uniform' polynomial size circuit family, where the gates are

AND, OR and NOT gates. Given an input x E {0, 1}, a circuit Cn and a gate

1 The class P can be characterized as the set of languages decidable by DLOGTIME-uniform
circuits [7J,[6]. We give our proof for Search-Uniform circuits (see chapter 3), but it can be adapted
to uniform circuits using the definition of [7], as we remark below.

33

g E Cn, let vg(x) be the value that gate g outputs when the circuit is evaluated on

input x. Input wires are considered gates of the circuit. If a gate g corresponds to

the ith input wire, then vg(x) = xi.

Our rational proof proceeds as follows. Given an input x and a circuit C, Merlin

sends as his message a vector {ag}gEc.. Allegedly, ag = vg(x), the correct output

that gate g would produce when the circuit is evaluated on x. To incentivize Merlin

to fill out the circuit correctly, Arthur can choose a gate g at random using O(logn)

coin tosses. If g is an input gate representing input xi, Arthur can pay Merlin $1000

if ag = xi and $0 if it is not. If g is an AND gate with input gates i, j, Arthur can

pay Merlin $1000 if ag = AND(ai, a) and zero otherwise. Analogously, Arthur can

compute the rewards for OR and NOT gates.

It is clear that the maximum expected payment that Merlin can obtain is $1000,

and that he receives this payment if and only if he fills out the circuit with the correct

values at every step. Given the filled out circuit, Arthur can simply read agut for the

output gate gou which, given that Merlin is incentivized to be truthful, should be the

value of C(xi,..., xj.

As a remark, let us point out that this proof requires, for any gate g in a polyno-

mial size circuit, the ability of finding any given input to g in logarithmic time. For

example, if g was an AND gate, then we needed to check that ag = AND(a, a3)

where i, j were the input gates to g. If we want to use the decision version of uni-

formity, we can alter our proof so Arthur chooses three gates (g, i, j) at random, and

proceeds with the proof only if i, j are the inputs to g (which he can check by deciding

whether the tuples (1n, g, i, 1) and (1, g, j, 2) are in the connection language of the

circuit). If they are not the inputs to g, the proof halts and Merlin gets nothing. Note

that this does not affect Merlin's incentives and scales down his expected reward by

at most a polynomial factor, so the budget of the proof is still polynomial. Thus, we

can modify our rational proof so it applies to the decision version of DLOGTIME

uniformity.

This shows that there exist one round rational proofs with O(log n) complexity,

poly(n) communication and one round for languages in P. We now show such proofs

34

also exist for the language SAT = {# : # is a satisfiable boolean formula }. Given a

formula 4 : {0, 1}' -+ {0, 1} with m clauses, Merlin sends Arthur a pair (y, k), where

y E {0, 1} is an assignment of the variables that (allegedly) maximizes the number

of satisfied clauses in 0 and k is (allegedly) the number ##(y) of clauses satisfied by

y. Arthur gives Merlin the following rewards to ensure that k and y are reported

truthfully:

1. To incentivize Merlin to announce y to satisfy as many clauses as possible,

Arthur chooses a clause c of # at random by tossing O(log n) coins. Denote the

clause by c = xi, V x2 , V xi3 (to make notation simpler, we assume the inputs

are not negated). Arthur can now read yi, yt 2, yi, from Merlin's message y and

check whether c(y) = yi, V yi2 V y 3 is satisfied. If it is, then Arthur pays Merlin

$1000. Otherwise, Arthur pays Merlin $0. Call this reward R,(/, y, c).

2. Even knowing and y, and knowing that y satisfies as many clauses as possible,

Arthur still does not know if 0(y) = 1 (implying (is satisfiable) or 0(y) = 0

because evaluating requires polynomial time. Thus, Arthur needs to trust

that Merlin correctly reports k to be ##(y), the number of clauses satisfied by

y. To incentivize Merlin to make this report, Arthur samples another clause e'

from #b uniformly at random, evaluates d(y) and gives Merlin a reward equal

to 6 - BSR(K, &'(y)),2 where K is a random variable over {0, 1} constructed

so that Pr[K = 1] = and 6 is a scaling factor to be chosen later. Note

that, since c' is a uniformly random clause, the probability Pr[(y) = 1] is

equal to . Assume momentarily that y was honestly reported and is now

out of Merlin's control, so the only way that Merlin controls this reward is by

setting k. Since BSR is a strictly proper scoring rule, he will want to announce

Pr[K = 1] = Pr[d(y) = 1], or equivalently k = ##(y). Call this reward

5 - R2(#, y, k, &).

Note that if the two rewards were given to two separate Merlins, we could guar-

antee that (1) the first Merlin correctly announces a y maximizing the number of
2As in theorem 1, use the randomized Brier scoring rule so the computation can be done in

O(log n) time.

35

satisfied clauses in q and (2) the second Merlin correctly announces k = #4(y).

However, since we only have one expert, we need to scale his rewards so that he will

simultaneously announce all of this information truthfully.

When we work with one Merlin, we can guarantee that his incentives are correct

by scaling the rewards, as in our proof of theorem 1. Merlin's total expected reward is

Ec+,[R 1 (#, y, c)] + 6 -Eco [R2(, y, k, c')]

where 6 is a scaling factor that we will control. Note that R2 (#, y, k, c') = BSR(K, c'(y)) <

2, and that for any y = y' we have Ec,[Ri(#, y, c) - R1 (0, y', c)] > -. If we make

6 < , then Merlin always has a much higher incentive to report a y maximizing the

number of clauses in # (and hence get a very large reward), over reporting a "fake" y

to manipulate the (much smaller) reward obtained from -BSR(K, c'(y)). This shows

that Merlin is incentivized to report a correct y. Given that he reports a correct y,

he is also incentivized via the scoring rule to report a correct k. Finally, Arthur can

read k and determine whether the formula is satisfiable or not by checking whether

k = m or k < m. This shows that SAT admits a one-round rational proof. Note

that BSR(K, c'(y)) is always an integer multiple of 1, and hence the proof has a

polynomial size budget. Merlin's smallest loss from lying is - = n. Note that

this rational proof pays at most $1002. We will use this fact in our construction of

rational proofs for P11NP

So far, we have shown that any language in P U {SAT} admits a rational proof

with O(log n) complexity, poly(n) communication and 1 round. Now we need to show

that such proofs also exist for languages in PIINP.

Let L be a language in Pj|NP. This means that there exists a polynomial time

machine with an access oracle to SAT that, on input x, can make polynomially

many non-adaptive queries #, ... , # to the SAT oracle. Let SAT(Ob) be the oracle's

answer on query q5. The machine can then continue its computation on input x and

the oracle answers SAT(# 1),..., SAT(Oe) to decide whether x E L. More formally,

there exist two uniform polynomial-size circuit families {An}* 1 , {Bn} 1 such that

36

on input x E {0, 1}n

1. A(x) outputs m boolean formulas 51,..., #e.

2. B(x, SAT(# 1), ... , SAT(#e)) outputs L(x).

To produce our rational proof, we need to incentivize Merlin to simultaneowuly

1. Evaluate the circuit A(x) = (41,...,#e) correctly.

2. Give correct answers to SAT(# 1), ... , SAT(#e).

3. Evaluate the circuit B(x, SAT(# 1), ... , SAT(#,e)) correctly.

Any of these three problems can be solved individually. However, because we are

asking Merlin to solve the three problems simultaneously, there might be a conflict of

incentives for Merlin. The formulas 1, ... , #e depend on Merlin's computation of A(x).

Arthur only knows what queries to ask the NP oracle because Merlin computed A(x)

for him. If Merlin does not perform this computation truthfully, then Arthur might

query Merlin on different boolean formulas 01 , ... , Ot, and reporting his knowledge

about / might give Merlin a higher reward than reporting his knowledge about q.

Thus, Merlin might be incentivized to lie on the computation of A(x) in order to get

a higher reward for his knowledge about boolean formulas.

We solve this problem by scaling Merlin's reward. Let nC be the size of circuit An.

This is also a bound on the number i of queries to the SAT oracle. Let a(41), ... , a(#1)

be Merlin's answers to the SAT queries. Let n' be a bound on the size of the

circuit Bn+nc (xi,..., xn, &(#1),..., a(#kc)). We note that the size of this circuit does

not depend on the answers), ... ,a(e)).

Regardless of Merlin's answers a(ki), ... , c(qn) to the SAT queries, Merlin always

maximizes his reward by evaluating Bn+nc(xl, ... , x, , a(#1), ... , a(obc)) correctly. If he

fills out this circuit correctly, he gets $1000 in expectation, and he gets less money if

he gives incorrect answers. Thus, we do not need to scale down Merlin's reward for

computing the circuit B in order to incentivize him to truthfully compute a(#b) =

SAT(#5).

37

However, Merlin can still lie on the computation of A(x) = (#1,...,#e) in order

to obtain more money for his knowledge about boolean formulas. To prevent this,

we note that the maximum amount of money that Merlin can make by answering

queries about #1, ... , #e is f- $1002 because Merlin makes at most $1002 on each SAT

query, and there are t such queries. Since e < n', Merlin makes at most $1002 -n' by

answering SAT queries.

How do we prevent Merlin from lying on the computation of An(x)? Since An has

size n', by lying on one gate g of A.(x) Merlin loses at least $ 1000. Thus, if Arthur

scales down the reward for each SAT query by a factor of -y = -, Merlin cannot

make more than $y1002nc < -L$1000 by answering SAT queries. Thus, Merlin will

never lie on the computation of A(x) (obtaining an expected loss of at least inQ) in

order to gain only a small reward on his answers to SAT queries.

This shows that any language in P1NP has one-round rational proofs with log-

arithmic complexity and polynomial communication. Note that if we scale all the

rewards by a large enough polynomial (depending on the circuit size) we can make all

rewards integers (that are bounded above by a polynomial in n) and any differences

in reward larger than $1000. Thus, the proof has polynomial budget.

Now we need to show that DRMA[log(n), poly(n), 1] E PIINP. Let L be a language

that admits a one-round rational proof with reward function R, predicate function

wr. For any input x, message a from Merlin and random coin tosses b from Arthur,

let V(a) = Eb[R(x, a, b)]. 3 Let n = IxI and let B = n' be the budget of the rational

proof. This means that we can think of the value function V(a) as taking integer

values in the set [0, B]. Let i* = maxa V(a) and let A* = argmaxa V(a). Since any

a* E A* maximizes Merlin's value V(a), we must have that r(x, a*) correctly tells us

whether x E L or not. Furthermore, for any a 5 A* we have V(a*) - V(a) > 1000

Let M be the language of pairs (i, c) E {0,..., B} x {0, 1} such that there exists a

message a satisfying V(a) > i and ir(x, a) = c. Note that the language M is in NP.

Since Arthur only tosses logarithmically many coins, the value V(a) = Eb[R(x, a, b)]

'We use the notation V(a) to denote the value of message a. It should not be confused with the
verifier in the formal definition of rational proofs, who we just call Arthur in this chapter.

38

can be computed in polynomial time. Once this value has been computed, we can

verify in polynomial time whether V(a) i, and whether 7r(x, a) = c.

Our goal now is finding the largest value i* E {O, ... , B} such that there exists a

c with (i*, c) E M. Such i* will satisfy i* = V(a*) for any a* that maximizes V. For

any such a*, we must have ir(x, a*) = L(x). Therefore, exactly one of (i*, 0) or (i*, 1)

belongs to the language M. This unique bit c allows us to determine whether x E L

or not.

To find i*, we can make 2 - B parallel queries to the NP language M, one for

each pair (i, c). Since (i, c) E M if and only if there exists a such that V(a) > i and

-r(x, a) = c, i* will be the largest value of i for which our oracle tells us (i, c) E M.

Since the bit c associated with i* is unique, we conclude that L can be decided in

pIINP. Q.E.D.

39

40

Chapter 6

Rational Proof Characterization of

p||MA

The rational proof for PINP shows that, even for languages in co - NP -which do

not admit classical Merlin Arthur proofs unless the polynomial hierarchy collapses-

there exist polynomial budget, logarithmic time, 1 round rational proofs. How limited

are we by the restriction that Arthur act in logarithmic time? Is it possible to give a

constant round rational proof with polynomial budget and a polynomial time verifier

that for languages much more powerful than those in P11NP? We show that this is

not the case: the set of languages decidable by one round polynomial budget rational

proofs with a polynomial time verifier is exactly plIMA. That is, the NP oracle in

our previous proof is replaced by an MA oracle.

Theorem 3. DRMA[poly(n),poly(n), 1] = pu|MA

Proof. First, it is clear that MA admits one-round rational proofs with polynomial

(actually constant) budget. Let L be a language in MA and let x be an input. There

exists a verifier V(-, -, -) such that, if x E L, there exists a message a from Merlin

that Prb[V(x, a, b) = 1] > ' where the probability is taken over Arthur's random coin

tosses b. If x L, then for every message a by Merlin we have Prb[V(x, a, b) = 0] > .

The rational proof for L proceeds in the following way. Merlin reports a certificate a

and a bit c E {0, 1}. If c = 1 (that is, Merlin reports that x E L, then Arthur tosses

41

random coins b and gives Merlin a reward equal to V(x, a, b). If c = 0 (that is, Merlin

reports that x V L, then Arthur gives Merlin a reward equal to }

Clearly Merlin maximizes his reward by being honest and reporting c = L(x).

When L(x) = 1, he gets, an expected reward of Pr[V(x, a, b) = 1] ' for being

honest and reporting c = 1, and an expected reward of . for lying and reporting

c = 0. When L(x) = 0, he gets an expected reward of . for being honest and

reporting c = 0 and an expected reward of Pr[V(x, a, b) = 1] _ j for lying and

reporting c = 1.

Now we show that plIMA admits one round rational proofs. In our rational proto-

col, the verifier uses the prover as an oracle for the MA queries. The verifier can ask

all these queries in parallel, which does not affect the prover's incentives. Finally, he

uses the prover's answers as oracle answers in his plIMA computation.

The proof that DRMA[poly(n),poly(n), 1)] c puMA is similar to our proof above

that DRMA[O(logn),poly(n), 1] is in pINP. Let L be a language admitting a one-

round rational proof with reward function R and predicate 7r. Let a be Merlin's

message and b be Arthur's coin tosses. Recall that we defined the value of Merlin's

message as V(a) = EbR(x, a, b), where x is the input whose membership in L we are

trying to decide. The key is that, since the rational proof has a polynomial budget, the

value V(a) is an integer in {0,..., B} for some B that is polynomial in jxj. Let M be

the language of pairs (i, c) E {0, ... , B} x {0, 1} such that there exists a with V(a) i

and ir(x, a) = c. In our proof for showing DRMA[O(logn), poly(n), 1] C pIINP, We

made use of a language M E NP. M was in NP because when Arthur tosses

logarithmically many coins, the value V(a) can be computed in polynomial time.

What happens if we allow Arthur to use polynomially many coins? In this case,

we can't necessarily verify whether a pair (i, c) E M in polynomial time because

computing V(a) = Eb[R(x, a, b)] requires adding up exponentially many terms. How-

ever, the language M is in the class MA. To see this, consider the following classical

Merlin-Arthur protocol. On input a pair (i, c), Merlin sends Arthur a message a, al-

legedly one that makes V(a) = Eb[R(x, a, b)] i. Arthur now generates m uniformly

random strings b', ... , b", where each b' +- {0, 1}P*Y(n) and computes the sample aver-

42

age S = ' "L R(x, a, bi). Arthur accepts if S > i - and ir(x, a) = c, and rejects

otherwise.

We need to prove soundness and completeness for this protocol. We first prove

completeness. That is, the case where (i, c) E M and Merlin is honest. That is, Merlin

sends a message a such that V(a) i and ir(x, a) = c. One can show using Chernoff's

bound that if m is large enough (but still polynomial), then Pr[S > V(a) - }> : .

Now we prove soundness. That is the case where (i, c) 5 M. Given Merlin's message

a, Arthur can quickly detect whether 7r(x, a) = c, so Merlin will get caught if he gives

the wrong c. Since V(a) is an integer and V(a) < i, we have V(a) 5 i - 1. Thus,

by flipping a polynomial number of coins Arthur can guarantee that Pr[S < i - 1]>

Pr[S < V(a) - 1] > 2. This proves soundness.

By making 2B parallel queries of the form "is (i, c) in M?", the Pu1MA machine

can decide whether x C L or not. Q.E.D.

Remark It is easy to generalize the argument in theorem 2 to show that d-round

rational proofs with polynomial budget and polynomial communication are contained

in the polynomial hierarchy. This suggests that the polynomial hierarchy might admit

d-round rational proofs. However, in order to construct good multi-round rational

proofs, we need to prevent Merlin from lying in one round in order to answer more

(or better) queries in the next rounds. While we have been able to avoid this problem

for TC0 and the counting hierarchy by using random coin tosses to decide future

queries, this technique is tied to the nature of these "majority" complexity classes. It

is not clear whether such techniques can be extended to give rational proofs for the

polynomial hierarchy.

43

44

Chapter 7

Conclusion

This thesis introduced a new way of delegating computation, and showed that, as

long as we trust our computation providers to act in their best interest, verification

is not necessary. Thus, the rational proofs that we propose are much faster and

efficient ways of delegating computation than traditional interactive proofs that rely

on verifying that the prover is not cheating.

With these tools, I was able to give new characterizations of complexity classes,

such as TCO, pIINP and pl|MA based on incentives. One ambitious avenue for future

work would be to use these rational characterizations in order to better understand

the power of these complexity classes.

I believe that there is a large potential role for incentives in computation. The

world is not full of malicious adversaries who will go out of their way to sabotage

our best intentions. Instead, it is full of rational people who act in their best interest

(and even sometimes altruistically). Being aware of this rationality may hold the key

to designing faster and more powerful interactive protocols.

45

46

Bibliography

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Journal
of the ACM, 45(3):501-555, 1998.

[21 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new char-
acterization of np. Journal of the A CM, 45(1):70-122, 1998.

[3] Pablo Daniel Azar and Silvio Micali. Rational proofs. In Proceedings of the 44th
symposium on Theory of Computing, pages 1017-1028. ACM, 2012.

[4] LAszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the twenty-third annual
A CM symposium on Theory of computing, pages 21-32. ACM, 1991.

[5] Laszlo Babai and Shlomo Moran. Arthur-merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer and System
Sciences, 36(2):254-276, 1988.

[6] David A. Mix Barrington and Neil Immerman. Time, hardware, and uniformity.
In Proceedings of Ninth Annual IEEE Structure in Complexity Theory Confer-
ence, pages 176-185. IEEE Computer Society, 1994.

[7] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On unifor-
mity within nc1. Journal of Computer Systems Science, 41(3):274-306, 1990.

[8] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate pcps
for multidimensional bin-packing problems. Information and Computation,
196(1):42-56, 2005.

[9] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth
reducibility. SIAM Journal on Computing, 13(2):423-439, 1984.

[10] Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash equilib-
rium. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pages 261-272. IEEE Computer Society, 2006.

[11] Anne Condon and Richard J. Lipton. On the complexity of space bounded
interactive proofs. In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, pages 462-467. IEEE Computer Society, 1989.

47

[12] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.
The complexity of computing a nash equilibrium. SIAM Journal on Computing,
39(1):195-259, 2009.

[13] Cynthia Dwork and Larry J. Stockmeyer. Finite state verifiers i: The power of
interaction. Journal of the A CM, 39(4):800-828, 1992.

[14] Cynthia Dwork and Larry J. Stockmeyer. Finite state verifiers ii: Zero knowledge.
Journal of the A CM, 39(4):829-858, 1992.

[15] Funda Ergiin, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilis-
tically checkable proofs. Information and Computation, 189(2):135-159, 2004.

[16] Uriel Feige, Shafi Goldwasser, LAszl6 LovAsz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the
A CM, 43(2):268-292, 1996.

[17] Uriel Feige and Joe Kilian. Making games short. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 506-516. ACM,
1997.

[18] Joan Feigenbaum, Daphne Koller, and Peter Shor. A game-theoretic classification
of interactive complexity classes. In Proceedings of Tenth Annual IEEE Structure
in Complexity Theory Conference, pages 227-237. IEEE Computer Society, 1995.

[19] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

[20] William Hesse, Eric Allender, and David A Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4):695-716, 2002.

[21] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Pro-
ceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 723-732. ACM, 1992.

[22] Gillat Kol and Ran Raz. Competing provers protocols for circuit evaluation.
Electronic Colloquium on Computational Complexity (ECCC), 18:122, 2011.

[23] Mark W Krentel. The complexity of optimization problems. Journal of computer
and system sciences, 36(3):490-509, 1988.

[24] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253-1298, 2001.

[25] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[26] Grant Schoenebeck and Salil Vadhan. The computational complexity of nash
equilibria in concisely represented games. In Proceedings of the 7th ACM con-
ference on Electronic commerce, pages 270-279. ACM, 2006.

48

[27] Yael Tauman Kalai Shafi Goldwasser and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Proceedings of the 40th annual A CM
Symposium on Theory of computing, pages 113-122. ACM, 2008.

49

