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Abstract

In the classical prophet inequality, a gambler observes
a sequence of stochastic rewards V1, ..., Vn and must
decide, for each reward Vi, whether to keep it and
stop the game or to forfeit the reward forever and
reveal the next value Vi. The gambler’s goal is to
obtain a constant fraction of the expected reward that
the optimal offline algorithm would get. Recently,
prophet inequalities have been generalized to settings
where the gambler can choose k items, and, more
generally, where he can choose any independent set
in a matroid. However, all the existing algorithms
require the gambler to know the distribution from
which the rewards V1, ..., Vn are drawn.

The assumption that the gambler knows the
distribution from which V1, ..., Vn are drawn is very
strong. Instead, we work with the much simpler as-
sumption that the gambler only knows a few sam-
ples from this distribution. We construct the first
single-sample prophet inequalities for many settings
of interest, whose guarantees all match the best pos-
sible asymptotically, even with full knowledge of the
distribution. Specifically, we provide a novel single-
sample algorithm when the gambler can choose any
k elements whose analysis is based on random walks
with limited correlation. In addition, we provide
a black-box method for converting specific types of
solutions to the related secretary problem to single-

sample prophet inequalities, and apply it to several
existing algorithms. Finally, we provide a constant-
sample prophet inequality for constant-degree bipar-
tite matchings.

In addition, we apply these results to design
the first posted-price and multi-dimensional auction
mechanisms with limited information in settings with
asymmetric bidders. Connections between prophet
inequalities and posted-price mechanisms are already
known, but applying the existing framework requires
knowledge of the underlying distributions, as well as
the so-called “virtual values” even when the underly-
ing prophet inequalities do not. We therefore provide
an extension of this framework that bypasses virtual
values altogether, allowing our mechanisms to take
full advantage of the limited information required by
our new prophet inequalities.

1 Introduction

Prophet inequalities are a fundamental tool in op-
timal stopping theory. In the classical prophet in-
equality, a gambler observes a sequence V1, ..., Vn of
n rewards sampled independently from known distri-
butions D1, . . . ,Dn. After seeing the ith reward, the
gambler has two options: he can stop the game and
keep reward Vi, or he can continue the game. If he
chooses to continue the game, he forfeits reward Vi
forever, and is shown the next reward Vi+1. The gam-



bler’s goal is to obtain an expected reward compet-
itive with the best offline algorithm, represented by
a prophet who can observe the values of all the vari-
ables V1, ..., Vn before making her selection. A semi-
nal result of Krengel, Sucheston and Garling [20, 21]
states a strategy for the gambler exists that guar-
antees an expected reward of at least half of the
prophet’s. Recently there has been a renewed inter-
est in prophet inequalities, generalizing the problem
to settings where the prophet and gambler can choose
any k out of the n presented items [1, 6], and more
generally to settings where the prophet and gambler
can choose any independent set in a matroid or ma-
troid intersection environment [18]. However, all ex-
isting results require the gambler to know D1, . . . ,Dn.

We improve on the existing literature by giving
the first prophet inequalities with limited informa-
tion. More concretely, we show how the gambler can
obtain a constant factor of the prophet’s expected re-
ward, even when he only knows a single sample from
each Di.1 This approach is robust, and guarantees—
in expectation over the observed sample sample and
the realized state of the world—a simultaneous ap-
proximation to the prophet’s reward for all possible
distributions D. Our work is inspired by recent litera-
ture on mechanism design [11, 14] and on ad auctions
[9, 10] which explores how to obtain approximately
optimal revenue with limited information about an
existing distribution of bidders’ values. Our work ap-
plies this limited information framework beyond auc-
tions. Indeed, while our work has applications in on-
line and multi-dimensional mechanism design, it also
applies to the setting of optimal stopping problems.

1.1 Our Results. In the list below, we summarize
our new prophet inequalities. We remark that, for
all the results below, the weights of the items we
are choosing online are revealed in an adversarial
order (where the adversary observes the values in
advance before deciding how to order the elements)
and where the online algorithm has no knowledge of
the distribution D from which the values are drawn
except for a single sample. The only exception is
our result for constant degree bipartite matching
environments, where the online algorithm requires a
constant number samples from the distribution D.

• k-Uniform Matroids. A 1 − O( 1√
k

)-

competitive single-sample prophet inequality for
k-uniform matroids. This competitive ratio is

1As described below, one of our results requires a constant
number of samples.

asymptotically optimal as a function of k.

• Transversal Matroids. A 1
16 -competitive

single-sample prophet inequality.

• Graphic Matroids. A 1
8 -competitive single-

sample prophet inequality.

• Laminar Matroids. A 1
12
√
3
-competitive

single-sample prophet inequality.

• Constant Degree Bipartite Matchings. A
1

6.75 -competitive constant-sample prophet in-
equality.

1.2 New Results in Mechanism Design. My-
erson’s seminal paper [22] shows how to construct
the revenue-optimal single-item auction when each
buyer’s valuation is drawn independently from a
known distribution. Starting with work by Hart-
line and Roughgarden [14] and by Dhangwatnotai,
Roughgarden and Yan [11], some recent attention has
been focused on designing auctions that guarantee a
constant-factor approximation to Myerson’s optimal
auction, even when the seller has limited informa-
tion about these distributions. However, prior to this
work, progress on this front has been mostly limited
to single-dimensional settings.

We apply our new prophet inequalities to con-
struct the first truthful and approximately optimal
auctions for certain multi-dimensional settings that
use limited information. It is worth noting that we
cannot simply plug our new prophet inequalities into
the existing machinery of Chawla, Hartline, Malec
and Sivan [6] to obtain these results, as their ma-
chinery requires full knowledge of the distributions,
as well as the ability to compute “virtual values.2”
Our main contribution on this front is an extension
of their framework that allows us to analyze the ex-
pected virtual surplus of our mechanisms without
ever learning the virtual values.

It is also worth noting that our results apply
whenever the buyers’ valuations are drawn either
from identical regular distributions, or from distinct
monotone hazard rate (MHR) distributions. In con-
trast, all existing multi-dimensional mechanisms with
limited information work only when bidders have
identical distributions [8, 23]. More concretely, our
results will apply to the following settings:

2Virtual values were introduced in Myerson’s seminal paper

and are known to have strong connections to revenue maxi-
mization. The virtual value of a bidder with value v sampled

from distribution Di with CDF F and PDF f is v − 1−F (v)
f(v)

.



• Sequential Posted Price Mechanisms
(SPMs). In this setting, a seller offers a service
to buyers who arrive online, in an order chosen
by the seller. Each buyer i has a value vi for
receiving service, and is offered a take-it-or-
leave-it price pi. The seller may face constraints
on which buyers can be served simultaneously,
such as matroid constraints (that is, a set
S of buyers can be simultaneously allocated
service if and only if S is an independent set
in a matroid). We show a new approximately
optimal single-sample SPM for all matroid
settings. This improves over previously known
SPMs, which applied to k-uniform settings and
required bidder distributions to be identical [25].

• Order-Oblivious Posted Price Mecha-
nisms (OPMs) for multi-dimensional envi-
ronments. Order-Oblivious Posted Price mech-
anisms are approximately optimal SPMs, whose
revenue guarantee holds regardless of the order
in which bidders arrive (i.e. the seller may no
longer choose the order in which bidders arrive),
and are known to imply truthful mechanisms for
corresponding multi-dimensional settings [6, 18].
We construct single-sample OPMs for all envi-
ronments for which we construct single-sample
prophet inequalities, including graphic, laminar,
transversal and partition matroids, as well as
(constant-sample OPMs for) constant-degree bi-
partite matching settings. To the best of our
knowledge, our mechanisms are the first OPMs
that do not require full knowledge of the distri-
bution or the ability to compute virtual values.

• Multi-Dimensional Matching environ-
ments. In these environments, there are n
buyers and m goods, and no buyer can be allo-
cated more than one good, or good be allocated
to more than one buyer. This induces a bipartite
graph between buyers and goods, with an edge
(i, j) present if vij > 0. When this graph has
maximum degree d (no buyer has value for more
than d goods, and no good is valued by more
than d buyers), we give a mechanism that uses
d2 + 1 samples. We note this is the first limited-
sample mechanism for matchings when bidders
are asymmetric. In the case of i.i.d. regular
distributions, Roughgarden, Talgam-Cohen and
Yan [23] and Devanur, Hartline, Karlin and
Nguyen [8] give limited-information mechanisms
for general matching settings.

1.3 Our techniques.

1. Reduction from existing secretary prob-
lems. In section 3, we give a black-box reduc-
tion that obtains single-sample prophet inequali-
ties from existing order-oblivious3 algorithms for
the secretary problem.4 This allows us to obtain
prophet inequalities for transversal, graphic and
laminar matroids based on corresponding secre-
tary algorithms given by Dimitrov and Plaxton
[12], Korula and Pal [19] and Jaillet, Zoto and
Zenklusen [16]. However, not all algorithms for
the secretary problem are order-oblivious. In
particular, Kleinberg’s algorithm for k-uniform
matroids [17] is not order-oblivious, and neither
is Korula and Pal’s algorithm for matchings [19].

2. Sufficient thresholds with limited samples.
In section 5, we give a constant-sample prophet
inequality for constant-degree bipartite match-
ing settings. A prophet would accept element
i only if it were above a certain threshold, de-
termined by the values of all other items. Since
the elements arrive one by one, we cannot com-
pute these thresholds, and with a constant num-
ber of samples, we cannot even estimate them
accurately. Instead, we use our samples to set
sufficient thresholds that do not necessarily bear
any relation to the prophet’s thresholds.

3. Analysis of correlated random walks The
best known secretary algorithms [17] and full-
information prophet inequalities [1] for k-
uniform matroids both guarantee a 1 − O( 1√

k
)

competitive ratio. In order to asymptotically
match this competitive ratio, we give a new al-
gorithm in section 4, whose analysis models the
drawing of “samples” or “values” as positive and
negative steps in a random walk. This random
walk is correlated because for every “sample” si
that we observe (which makes the walk move up-
ward), there is a corresponding “value” vi which
will make the walk move “downward”. By es-
timating the expected height of this correlated
random walk, we are able to guarantee that each
of the top k values are selected by our online al-
gorithm with probability 1−O( 1√

k
).

3We define order-oblivious algorithms in Section 3.
4In the secretary problem, the value of weights can be

arbitrary, but the elements are revealed in a random order.

In the prophet inequality problem, the value of weights come
from distributions, but the order in which items are presented
can be arbitrary.
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There are many settings (arbitrary matroids,
the intersection of any k arbitrary matroids) for
which full-information prophet inequalities exist but
limited-information prophet inequalities don’t. We
hope that our techniques can help develop such new
limited-information algorithms in the future.

2 Preliminaries

Environments and Offline Selection Prob-
lems. An environment I = (U ,J ) is given by a
universe of elements U = {1, ..., n} and a collec-
tion J ⊂ 2U of feasible subsets of U . An algo-
rithm A for the offline selection problem on I takes
as input a vector of positive weights v = (v1, ..., vn)
for elements of U and outputs the independent set
MAX(v) = argmaxS∈J

∑
i∈S vi with the maximum

weight. We denote by OPT (v) =
∑
i∈MAX(v) vi the

weight of this maximum independent set.
Online Selection Problems. Given an envi-

ronment I = (U ,J ), an algorithm A for the online
selection problem takes as online input a vector of
values v = (v1, ..., vn) in some order (vi1 , ..., vin) (this
order will be specified below). The algorithm must
maintain a set A of accepted elements, and element
ij ∈ U must be either accepted when its value vij
is revealed, or rejected forever before moving on to
the next item ij+1. At all times, the set A of ac-
cepted items must be an independent set (that is,
A ∈ J ). For convenience of notation, we define
A∗(v) = A(vi1 , ..., vin) to be the final set of items
accepted by A, and note that A∗(v) depends on the
order in which the items vi1 , ..., vin are revealed.

Prophet Inequalities. Given an environment
I with universe set U = {1, ..., n}, let D = D1 ×
... × Dn be a product distribution over Rn≥0.5 Let
v = (v1, ..., vn) be drawn from D. We say that an
algorithm A for the online selection problem induces
a prophet inequality with competitive ratio α for
environment I if

Ev←D[
∑

i∈A∗(v)

vi] ≥ α · Ev←D[OPT (v)]

where the expectations are taken with respect to the
random choice of v and the random coin tosses of
A. The above inequality holds regardless of the order
in which the elements vi1 , ..., vin are revealed. We

5We remark that the assumption that the rewards V1, ..., Vn
are independent is somewhat necessary if we want a constant
competitive ratio. Hill and Kertz [15] show that if we allow
arbitrary correlation between the rewards, then the gambler

cannot obtain more than a 1
n

fraction of the gambler’s expected
reward.

remark that this is a stronger property than that
guaranteed by the prophet inequalities in previous
papers [18], where the adversary had to choose which
element ij to reveal at time j using only knowledge of
the items and values (i1, vi1), ..., (ij−1, vij−1

) revealed
up to time j − 1.

Limited-Information Prophet Inequalities.
In order to guarantee a prophet inequality with a
constant competitive ratio, the online algorithm A
must have some information about the distributions
D1, ...,Dn from which the values are drawn. We say
that A is a constant-sample prophet inequality if
it has access only to a constant number of samples
s1 = (s11, ..., s

1
n), ..., sd = (sd1, ..., s

d
n), each drawn from

the joint distribution D. When A is constant-sample,
its expected reward Ev,s1,...,sd [

∑
i∈A∗(s1,...,sd;v) vi] is

computed over the randomness in the vector of values
v, the random samples s1, ..., sd and the random coin
tosses of the algorithm. We remark that, except
for our results for matching environments, all our
limited-information prophet inequalities use only one
sample s = (s1, ..., sn) from the joint distribution D.

Our Constraints. We can give different feasi-
bility constraints by placing different structure on J .
We consider constraints that are matroids, specific
types of matroids, or bipartite matchings. We refer
the reader who is not familiar with these constraints
to Appendix A for a formal definition of each setting
we consider.

Secretary Problems. The secretary problem
for an environment (U ,J ) [5] is an online selection
problem where the item values v1, ..., vn can be ad-
versarially chosen, and they are revealed to the online
algorithm in a random order. This is incomparable in
terms of hardness with the prophet inequality setting
described above, where the values are random vari-
ables, and they are presented in an adversarial order.
We remark that there exist competitive algorithms
for the secretary problem when J is a uniform ma-
troid [17], a laminar matroid [16], graphic matroid
[19], a transversal matroid [12], or a bipartite match-
ing [19]. If the online algorithm can choose the order
in which the weights are revealed, then there exists
a competitive algorithm for general matroids [16]. If
the weight for item i is not completely adversarial,
but is instead chosen randomly without replacement
from a list (w1, ..., wn), then there also exists a com-
petitive algorithm for matroids [24], even when the
order in which the items is revealed is adversarially
chosen [13].



3 Prophet Inequalities from Secretary
Algorithms

In this section, we provide a formal black-box method
to convert specific kinds of solutions to the secretary
problem to single-sample prophet inequalities. More
formally, our reduction will work for order-oblivious
algorithms, which we define as follows.

Definition 1. We say that an algorithm S for the
secretary problem (together with its corresponding
analysis) is order-oblivious if, on a randomly or-
dered input vector (vi1 , ..., vin):

1. (algorithm) S sets a (possibly random) number
k, observes without accepting the first k values
S = {vi1 , ..., vik}, and uses information from S
to choose elements from V = {vik+1

, ..., vin}.

2. (analysis) S maintains its competitive ratio even
if the elements from V are revealed in any (possi-
bly adversarial) order. In other words, the anal-
ysis does not fully exploit the randomness in the
arrival of elements, it just requires that the el-
ements from S arrive before the elements of V ,
and that the elements of S are the first k items
in a random permutation of values.

We argue in appendix C of the full version of the
paper that existing algorithms for graphic, transver-
sal and laminar matroids are order-oblivious [4]. Fur-
thermore, Oveis Gharan and Vondrak [13]’s matroid
secretary algorithm for the random assignment model
is also order-oblivious (a fact that they claim in
their paper). Combined with Theorem 3.1 below,
this gives us single-sample prophet inequalities for
graphic, transversal and laminar matroids, as well as
arbitrary matroids when each Di is identical. This is
stated formally in Corollary 3.1.

We now show how to construct an algorithm P
for the limited-information prophet problem given an
order-oblivious algorithm S for the secretary prob-
lem. Recall that the algorithm P takes as offline in-
put a vector s = (s1, ..., sn) of samples drawn from a
distribution D, and takes as online input a vector v
also drawn from D, and whose individual components
are provided in an adversarial order.

PS(s1, ..., sn; vi1 , ..., vin)
Offline Stage

1. Let k be the number of elements that S
observes before it starts accepting elements
(i.e., k = |S|).

2. Let sj1 , ..., sjn be a random permutation of
s = (s1, ..., sn). Pass sj1 , ..., sjk as the first
k inputs to S.

Online Stage

3. For each index i ∈ {i1, ..., in}:
a. If i ∈ {j1, ..., jk}, then index i has

already been processed as a “sample”.
Ignore it and continue.

b. If i ∈ {jj+1, ..., jn}, then pass the
value vi to algorithm S, and accept
i if and only if S accepts i.

Theorem 3.1. If S is an order-oblivious algorithm
for the secretary problem with competitive ratio α,
then PS is a single-sample prophet inequality with
competitive ratio α.

We give the proof for Theorem 3.1 in appendix
C. The proof that PS inherits the competitive ratio
of S uses the fact that the joint distribution of values
associated to the items in our simulation of S is
exactly the same as the true value distribution D.
Note that our single-sample algorithm PS does not
use any sampled values for elements in the set V .
This is important, as we can then reuse the samples
for items in V for other purposes, such as setting
reserve prices in auctions, as we will see in Section 6.

Corollary 3.1.

1. For graphic matroids, there exists a 1
8 -

competitive single-sample prophet inequality
based on the secretary algorithm of Korula and
Pal [19]

2. For transversal matroids, there exists a 1
16 -

competitive single-sample prophet inequality
based on the secretary algorithm of Dimitrov and
Plaxton [12].

3. For laminar matroids, there exists a 1
12
√
3

-

competitive single-sample prophet inequality
based on the secretary algorithm of Jaillet, Soto,
and Zenklusen [16].

4. For general matroid settings, when weights are
drawn from identical and independent distri-

butions, there exists a
1− 1

e

20 -competitive single-
sample prophet inequality based on the secretary

5



algorithm of Oveis Gharan and Vondrak for ma-
troids in the random assignment model [13].6

4 Single-Sample Prophet Inequalities for
k-Uniform Matroids

Recently, Alaei [1] gave a full-information prophet

inequality that is
(

1− 1√
k+3

)
-competitive, which is

asymptotically optimal. This raises the question of
whether there also exists a 1 − O( 1√

k
) competitive

single-sample prophet inequality for k-uniform ma-
troids. Since the corresponding algorithm (of Klein-
berg, which obtains a competitive ratio of 1−O( 1√

k
))

for the secretary problem is not order-oblivious, we
cannot use our reduction from the previous section.
Instead, we develop a new algorithm, and show that
we can guarantee a 1 − O( 1√

k
) competitive ratio by

giving a new analysis for prophet inequalities based
on correlated random walks. We note also that our
algorithm is comparatively simpler than previous al-
gorithms.

4.1 The Rehearsal Algorithm. We now de-
scribe our algorithm, which we call the Rehearsal Al-
gorithm. The algorithm needs to fill k slots, and each
slot i is associated with a threshold Ti (which is de-
fined below). Each slot i can only be filled by a value
that is above the threshold Ti, and can only be filled
once. Each observed value can only fill a single slot.
When we see an element that can fill at least one
available slot, we fill the slot with the highest thresh-
old. When we see an element that cannot fill any
available slots, we reject it.

Intuitively, one might try to set the ith threshold
Ti to the ith largest sample. This algorithm doesn’t
quite work, but a small modification suffices: instead,
we set the first k−2

√
k thresholds equal to the top k−

2
√
k samples, then set the remaining 2

√
k thresholds

equal to the k − 2
√
k
th

highest sample (essentially
repeating this sample 2

√
k times as a threshold). This

is necessary in order for the probability of selecting
the highest-value items to be sufficiently close to 1.
(See Lemmas 10 and 11 in appendix G of the full
version of the paper [4].)

In appendix G, we prove the following theorem.
As we mentioned above, the proof may be interesting
in its own right for its use of correlated random walks
to analyze prophet inequalities. We defer part of the

6We note that a similar result for general matroids under
i.i.d. distributions was already proved by two of the authors

[18]. Their result did not emphasize the single-sample nature
of the algorithm.

proof to the last appendix, and the remainder to the
complete version of the paper [4].

Theorem 4.1. Let I = (U ,J ) be a k-uniform ma-
troid. The rehearsal algorithm is a single-sample
prophet inequality with a competitive ratio of 1 −
O( 1√

k
).

Rehearsal(s1, ..., sn; vi1 , ..., vin)
1. Offline Phase

1.a Let s(1) > ... > s(n) be the observed
samples in decreasing order.

1.b For j ∈ {1, ..., k − 2
√
k} set Tj = s(j).

1.c For k − 2
√
k < j ≤ k, set Tj = Tk−2

√
k =

s(k−2
√
k).

2. Online Phase
Initialize S = {1, . . . , k} as the set of available
slots. For j ∈ {1, ..., n}:
2.a Let vij be the value of the jth revealed item.

Let α be an index such that Tα−1 > vij >
Tα.

2.b Let S ∩ {α, α + 1, ..., k} be the set of slots
that have not been filled, and that could be
filled by vij . Let m = minS ∩ {α, ..., k}.
This is the first slot that could be occupied
by vij .

2.c If S ∩ {α, ..., k} is empty, reject vij

2.d If S∩{α, ..., k} is not empty, accept vij and
update S ← S −m.

5 Bipartite Matching Environments

Before we give our algorithm, we establish some
notation to make our exposition clearer.

Edge Indices. Let G = (L∪R,E) be a degree-d
bipartite graph, and let e = (`, r) be an edge in this
graph. There are at most d edges incident to `, and
we can assign them an arbitrary order {0, 1, ..., d−1}.
Analogously, we can assign the edges incident to r
an order {0, 1..., d − 1}. Without loss of generality,
assume that e is the jth edge incident to `, and the
kth edge incident to r. Define Index(e) = 1+j+d ·k.
This index function has two key properties

1. Index(e) ∈ {1, ..., d2}

2. If e, e′ share a vertex, then Index(e) 6=
Index(e′).

Edge Thresholds. Given an vector of values
v = (v1, ..., v|E|) and an edge e ∈ E define xe(v)
to be 1 if e is in the maximum weight matching



when the weights are given by v, and 0 if e is not
in this maximum weight matching.7 Note that xe
is a deterministic increasing function of ve when all
the other weights v−e are fixed. Thus, there exists a
threshold function that takes as input the weight v−e
of all the other edges, and outputs the lowest weight
that edge e needs to have to be in the maximum
weight matching.

Te(v−e) = inf{ve : xe(ve, v−e) = 1}.

Our algorithm. We construct an algorithm
PMatching that takes as offline input a collection

s1 = (s11, ..., s
1
n), ..., sd

2

= (sd
2

1 , ..., s
d2

n ) of samples,
and as online input a vector v of values (vi1 , ..., vin).
It proceeds as follows:

PMatching(s
1, ..., sd

2

; vi1 , ..., vi|E|)

Offline Phase:

1 For each edge e, compute i =
Index(e).

2 For each edge e, set its corresponding
sample to be si. Set its price to be
pe = Te(s

i
−e).

Online Phase:

3 Initialize a set A of accepted items to
∅.

4 For e ∈ {i1, ..., i|E|}:
4.a Flip a coin ce ={

1 with probability 1
3

0 with probability 2
3

4.b If ce = 0, discard edge e and
move on to the next edge.

4.c If ce = 1, accept edge e if and
only if ve > pe and A ∪ {e} is a
matching in the bipartite graph
G.

Theorem 5.1. The algorithm PMatching guarantees
a 1

6.75 competitive ratio for environments I that are
degree-d bipartite matchings.

We present the proof of this theorem in appendix
D. We remark that, for general bipartite matchings
(and, more generally, for intersections of two partition
matroids), an analogous algorithm with n samples
obtains the same competitive ratio.

7We can set a tie-braking rule so the maximum weight
matching is unique.

Even though our algorithm is not an auction, it
is inspired by an approximately optimal auction for
bipartite matching environments given by Chawla,
Hartline, Malec and Sivan [6]. Their auction re-
quires knowledge of the distribution from which edge
weights are drawn, and requires knowledge of the vir-
tual values associated with these distributions, which
can be estimated in their paper with n4 log n sam-
ples. In contrast, our algorithm only requires a con-
stant number of samples and approximately maxi-
mizes the weight of the matching (as opposed to its
virtual weight).

6 Mechanism Design with Limited
Information

In this section, we give new limited-information auc-
tions for online and multi-dimensional mechanism de-
sign. In particular, we improve over existing litera-
ture as follows

• Single-Dimensional SPMs with Non-
Identical Distributions We give the first
limited-information sequential posted price
mechanisms (SPMs) for matroids and constant-
degree bipartite matching settings. Our results
guarantee a constant approximation to revenue
when distributions are identical and regular, or
when distributions are distinct and MHR. The
best previously known limited-information SPM
[25] applies only to k-uniform matroids and
requires distributions to be i.i.d.

• OPMs for Multidimensional Unit-
Demand Mechanism Design We give
the first limited-information OPMs for parti-
tion, graphic, laminar, and transversal matroid
settings, as well as constant-degree bipartite
matchings. For bipartite matchings, there exist
limited-information auctions that approximately
maximize revenue when bidders have identical
distributions [8] [23]. Our auction is the first
that is approximately optimal for bidders with
distinct distributions satisfying the monotone
hazard rate condition.

• A new reduction from welfare to rev-
enue maximization We give a new reduc-
tion from approximate welfare maximization to
approximate revenue maximization for single-
dimensional environments when buyers’ prefer-
ences are identical and regular. This reduction
generalizes the well know fact that the Vickrey
Clarke Groves (VCG) auction with appropriate

7



reserves is approximately optimal for matroid en-
vironments [14, 11] to show that any mechanism
that approximately maximizes welfare (not neces-
sarily VCG) also approximately maximizes rev-
enue when valuations are regular and i.i.d.

Before stating our results more formally, we
establish some preliminaries and recall prior work on
mechanism design.

6.1 Mechanism Design Preliminaries. To im-
prove readability, some details are deferred to the ap-
pendix. Contained in Appendix B is a formal defini-
tion of a mechanism, posted-price mechanism, as well
as the specific mechanism design problems we solve
(called Bayesian Single-Dimensional Mechanism De-
sign (BSMD) and Bayesian Multi-Dimensional Unit-
Demand Mechanism Design (BMUMD) in [6]). Con-
tained also is a brief list of facts related to mechanism
design (such as the connection between revenue and
virtual valuations). We include here the relevant re-
lated work necessary to understand our approach.

Mechanisms with Reserves. The idea of com-
bining simple, welfare-optimizing mechanisms with
revenue-optimizing reserve prices originated in [14].
In [14], the authors first remove every bidder who
does not meet their reserve, and then run the wel-
fare maximizing mechanism. This process was later
dubbed an “eager” combination of mechanisms with
reserves. The authors of [11] introduce a “lazy” com-
bination of mechanisms with reserves that first runs
the mechanism, and then removes all bidders who do
not meet their reserve. In this work, we concern our-
selves primarily with lazy reserves. When we refer to
monopoly reserves, we mean setting the reserve price
φ−1i (0) for each bidder i. When we refer to sam-
ple reserves, we mean setting a random reserve price
ri ← Di for bidder i, that is drawn from the same
distribution as Di.

A reduction from OPMs to multi-
dimensional mechanism design. Chawla, Hart-
line, Malec and Sivan [6] show how to reduce design-
ing (approximately) optimal multi-dimensional mech-
anisms to (approximately) solving a related single-
dimensional problem in a specific way. Given an in-
stance I of a multi-dimensional mechanism design
problem with n items and m buyers, they construct
an analogous single-dimensional instance Icopies with
nm buyers. That is, each buyer i in the original set-
ting gets split into m buyers in Icopies. The (i, j)th

buyer in Icopies only values the (i, j)th good, and her
valuation vij is drawn from the same distribution Dij
as in the original setting. We use the following result

from [6]:

Lemma 6.1. ([6]) Let I be an instance of the
BMUMD, and let Icopies be its analogous single-
dimensional environment. If there exists an OPM
for Icopies that achieves an α-approximation to the
optimal revenue, then there exists a truthful mecha-
nism for I that achieves an α-approximation to the
optimal revenue. 8

6.2 From Prophet Inequalities to Mecha-
nisms. Let P(vi1 , ..., vin) be a limited-information
prophet inequality with a competitive ratio of α. All
of the limited-information algorithms that we gave
in the previous sections are monotonic in v, mean-
ing that the higher a value vi is, the higher the
probability that our algorithms accept item i. This
means that any of our limited-information algorithms
induces a limited-information online allocation rule
x(v), and this allocation rule is monotonic. When
each value corresponds to a different bidder (single-
dimensional setting), this monotonic allocation rule
implies a pricing rule p(v) which makes the mecha-
nism (x, p) truthful. This means that all our limited-
information algorithms can be used to give truthful
online mechanisms to maximize welfare. Further-
more, our mechanisms are posted price mechanisms.
This is because when we need to decide whether to
accept bidder i or not, the decision to accept de-
pends only on the set A of already accepted bidders
and on the samples that we have from D. If P ob-
tains a competitive ratio of α, we have Ev[xi(v) ·v] ≥
αEv[OPT (v)]. Thus, our prophet inequalities give se-
quential posted price mechanisms that approximately
maximize welfare in single-dimensional settings.

6.3 From Welfare to Revenue: The I.I.D.
Case. At this point, we have proven prophet inequal-
ities and turned them into posted-price mechanisms
with good welfare guarantees, but have said nothing
about revenue. We show in this section how to guar-
antee a good revenue approximation given a guar-
antee for a good approximation to welfare. We again

8Formally, they show that there exists a truthful mechanism
for I that obtains an α-approximation to the optimal revenue
achievable by any deterministic mechanism. It is shown
in [7] that the optimal revenue achievable by any (possibly

randomized) mechanism is at most five times larger than

that of the optimal deterministic mechanism. So an OPM
for Icopies that achieves an α-approximation to the optimal

revenue implies the existence of a truthful mechanism for I
that achieves an α/5 approximation to the optimal revenue of
any (possibly randomized) mechanism.



note that this process is novel and cannot be replaced
by simply plugging our prophet inequalities into the
machinery of [6], which requires full knowledge of the
distributions to apply, even if our prophet inequalities
do not.

Comparison Based Mechanisms. Our reduc-
tion from welfare to revenue when distributions are
i.i.d. requires the mechanism M to be comparison-
based. We define below what it means for a mecha-
nism to be comparison based when it uses samples.

Definition 2. Let M(v; s1, ..., sd) be a mechanism
for single-dimensional settings which depends on a
vector of bids v = (v1, ..., vn) ← D and also on
a collection of samples s1 = (s11, ..., s

1
n), ..., sd =

(sd1, ..., s
d
n), each drawn from D. Let x be

the allocation rule associated with M. We say
that M is comparison-based if the allocation rule
x(v1, ...vn, s

1
1, ..., s

d
n) only depends on the relative or-

der of its arguments, and not on their respective val-
ues.

The rehearsal algorithm and the algorithms de-
rived from our black-box reduction in corollary 3.1
are all comparison-based. The only algorithm which
is not comparison-based is our matching algorithm
PMatching, which uses an algorithm for computing
maximum weight matchings as a black-box to set
a threshold price pe = inf{ve : e is in a maxi-
mum weight matching when all other weights are

s
Index(e)
−e }. Since pe cannot necessarily be computed

by comparisons between the samples in sIndex(e),
PMatching is not comparison-based. If we use the
Greedy algorithm (which is comparison-based) in-
stead of an optimal bipartite matching algorithm,
then PMatching becomes comparison-based but loses
a factor of 2 in its competitive ratio.

Theorem 6.1. Let J be any downwards-closed set
system, and let each Di be identical and regular.
Let also M be any single-dimensional comparison-
based mechanism whose expected welfare competitive
ratio is α. Then the mechanism that combines
(either eagerly or lazily) M with monopoly reserves
has expected revenue competitive ratio α.

Of course, computing the monopoly reserves re-
quires knowledge of the distributions. These reserves
can be replaced by samples, using a result (stated
in Appendix E) from Azar, Daskalakis, Micali and
Weinberg [3].

Corollary 6.1. If M is a single-dimensional mech-
anism that guarantees an α approximation to welfare

when distributions are i.i.d. and regular then M com-
bined with lazy sample reserves guarantees an α

2 ap-
proximation to revenue and an α

2 approximation to
welfare.

6.4 From Welfare to Revenue: the MHR
case. Since we want mechanisms that guarantee
good revenue for asymmetric bidders, we also need
a reduction from welfare maximization to revenue
maximization when distributions are not identical. It
is well known (and stated in Appendix E) that, when
bidders’ distributions have a monotone hazard rate,
a single-dimensional mechanism that approximates
welfare combined with lazy monopoly reserves gives
a good approximation to revenue [11]. We emphasize
that an analogous result is not known for multi-
dimensional settings.9. Combining this with lemma
E.1, we obtain the following corollary.

Corollary 6.2. If M guarantees an α approxima-
tion to welfare and distributions are MHR then M
combined with lazy sample reserves guarantees an α

2e
approximation to revenue and an α

2 approximation to
welfare.

6.5 Our mechanisms. Since our limited-
information prophet inequalities guarantee a good
approximation to welfare, we are now ready to
give our approximately optimal multi-dimensional
OPMs. Given an environment J for which we have
a limited-information online algorithm P, our online
mechanism for J will behave as follows

1. Use P to choose a set W ∈ J of winners that
approximately maximizes welfare.

2. Use a sample r ← D as a vector of lazy reserves.
Keep only winners i ∈W that satisfy vi ≥ ri.

We note that for all the limited-information algo-
rithms that we obtain from our black-box reduction
in section 3, we only uses the samples si correspond-
ing to items i that are never chosen by our algorithms.
The samples si corresponding to items i that are cho-
sen by the algorithm (that is, corresponding to auc-
tion winners) are never used, and hence can be used
to set reserve prices.

In Appendix E, we state two theorems for OPMs,
one when distributions are i.i.d. and regular, and

9If such a result existed, then the VCG auction together
with appropriate reserves would be a very simple, approxi-

mately optimal multidimensional mechanism when distribu-
tions are MHR.

9



the other one when distributions have a monotone
hazard rate, but are not necessarily identical. We
remark, as described above, that to apply our algo-
rithm PMatching in the i.i.d. regular setting, we need
to modify it so it uses the greedy matching algorithm
as a black-box. Theorems E.1 and E.2 are direct ap-
plications of Corollaries 6.1 and 6.2. Essentially, they
state that we can obtain limited-information multi-
dimensional for in any unit-demand setting for which
we have a limited-information prophet inequality. If
we start with a limited-information prophet inequal-
ity with competitive ratio α, then the corresponding
mechanism for i.i.d. regular environments has rev-
enue and welfare competitive ratio α/2, and the cor-
responding mechanism for non-i.i.d. MHR environ-
ments has revenue competitive ratio α/2e and welfare
competitive ratio α/2. We separately state below our
theorems as they apply to bipartite matching, which
models settings where goods are matched to buyers.

Theorem 6.2. For the BMUMD problem on
constant-degree bipartite matching settings, there
exists a 1

13.5e -competitive auction using a constant
number of samples when buyers’ valuations are
drawn from MHR distributions. A modification
of this algorithm gives a 1

27 -competitive limited-
information auction when buyers’ valuations are
drawn from i.i.d. regular distributions.

Finally, even for settings where we do not
have limited-information prophet inequalities, we can
leverage existing results to obtain improved mecha-
nism design results. Jaillet, Soto and Zenklusen [16]
give an algorithm for the matroid secretary prob-
lem in the free order model, where the algorithm
gets to choose the order in which values are revealed.
This model corresponds to a Sequential Posted Price
Mechanism. We give in appendix F an improved anal-
ysis of Jaillet, Soto and Zenklusen, improving their
competitive ratio from 1

9 to 1
4 . We use this improved

analysis to give the following SPM.

Theorem 6.3. Let J be any matroid and let each
Di be MHR. The there exists a truthful SPM requiring
only a single sample from D that guarantees a revenue
competitive ratio of 1

8e and a welfare competitive ratio
of 1

8 . When the distributions Di are independent and
regular, this algorithm obtains a revenue competitive
ratio of 1

8 .
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[2] A. Archer and É. Tardos. Truthful mechanisms for
one-parameter agents. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium
on, pages 482–491. IEEE, 2001.

[3] Pablo Azar, Constantinos Daskalakis, Silvio Micali,
and Matt Weinberg. Optimal and Efficient Para-
metric Auctions. In SODA’13, 2013.

[4] Pablo D. Azar, Robert Kleinberg, and
S. Matthew Weinberg. Prophet Inequali-
ties with Limited Information. ArXiv Report,
http://arxiv.org/abs/0812.2277, 20013.

[5] Moshe Babaioff, Nicole Immorlica, and Robert
Kleinberg. Matroids, secretary problems, and online
mechanisms. In SODA’07, pages 434–443, 2007.

[6] Shuchi Chawla, Jason D. Hartline, David L. Malec,
and Balasubramanian Sivan. Multi-Parameter
Mechanism Design and Sequential Posted Pricing.
In STOC’10, 2010.

[7] Shuchi Chawla, David L. Malec, and Balasubrama-
nian Sivan. The Power of Randomness in Bayesian
Optimal Mechanism Design. In EC’10, 2010.

[8] Nikhil Devanur, Jason Hartline, Anna Karlin, and
Thach Nguyen. Prior-independent multi-parameter
mechanism design. In Internet and Network Eco-
nomics, pages 122–133. Springer, 2011.

[9] Nikhil R Devanur, Kamal Jain, Balasubramanian
Sivan, and Christopher A Wilkens. Near optimal
online algorithms and fast approximation algorithms
for resource allocation problems. In Proceedings of
the 12th ACM conference on Electronic commerce,
pages 29–38. ACM, 2011.

[10] Nikhil R Devanur, Balasubramanian Sivan, and
Yossi Azar. Asymptotically optimal algorithm for
stochastic adwords. In Proceedings of the 13th ACM
Conference on Electronic Commerce, pages 388–404.
ACM, 2012.

[11] P. Dhangwatnotai, T. Roughgarden, and Q. Yan.
Revenue maximization with a single sample. In
EC’10, pages 129–138. ACM, 2010.

[12] Nedialko B. Dimitrov and C. Greg Plaxton. Com-
petitive weighted matching in transversal matroids.
Algorithmica, 62(1-2):333–348, 2012.

[13] Shayan Oveis Gharan and Jan Vondrák. On variants
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Appendix
A Matroids and Feasibility Constraints

• Matroids. J is a matroid if and only if J is
downwards-closed10, contains ∅, and satisfies the
augmentation property: for all S, S′ ∈ J with
|S| > |S′|, there exists some x ∈ S − S′ such
that S′ ∪ {x} ∈ J .

• Uniform matroids of rank k. A set S ⊂ U is
in J if and only if |S| ≤ k.

• Partition matroids. Let B1, ..., B` be disjoint
subsets of U such that U = B1∪...∪B`. Associate
a positive integer capacity ci with each block Bi.
A set S ⊂ U is in J if and only if |S ∩ Bi| ≤ ci
for every i ∈ {1, ..., `}.

• Laminar matroids. Let F ∈ 2U be a laminar
family of subsets of U . F is a laminar family iff
for all A,B ∈ F , we have A ⊆ B, B ⊆ A, or
A ∩ B = ∅. Associate also, for every set A ∈ F ,

10J is downward-closed if for any S ∈ J and any T ⊂ S, we
have T ∈ J .

a positive integer capacity cA. A set S ∈ J if
and only if |S ∩A| ≤ cA for all A ∈ F .

• Graphic Matroids. Let G = (V,E) be a graph
with vertex set V and edge set E. The universe U
of the set system is given by the set of edges E. A
subset S ⊂ E is in J if and only if E induces no
cycles in the graph G. In other words, a subset
of edges is feasible if and only if it is a forest.

• Transversal Matroids. Let G = (L ∪ R,E)
be a bipartite graph, with left-vertex set L and
right-vertex set R. The universe U of the set
system is L, and a subset S ⊂ L is in J if and
only if there is a matching in the graph G that
matches every vertex of S to some vertex in R.

• Bipartite Matchings. Let G = (L ∪ R,E) be
a bipartite graph and let U = E. A set S ⊂ E is
independent if and only if it induces a matching
in G. The bipartite matching has degree d if at
most d edges are incident to any given vertex.

B Omitted Details From Section 6.1

Mechanisms. An instance of the Bayesian
Single-Dimensional Mechanism Design problem
(BSMD) is specified by a set system (U ,J ) and a
product distribution D = D1 × ...Dn, where n = |U|.
Each element of U represents a buyer, interested
in obtaining a service. The collection J ⊂ 2U

represents constraints on which buyers can receive
service simultaneously. Each buyer i’s value for
receiving service is a random variable vi drawn from
the distribution Di. A mechanism is said to be
dominant strategy truthful if it is in each bidder’s
interest to report truthfully their value for each item,
no matter what values are reported by the other
bidders.

Formally, a mechanism is a pair of vector-valued
functions (x, p) where, given a vector of bids b =
(b1, ..., bn), xi(b) is player i’s probability of receiving
service and pi(b) is player i’s expected payment. If
bidder i’s true preferences are given by vi, then her
expected utility when the profile of reported bids is
b is U(vi, bi, b−i) = xi(b) · vi − pi(b). A mechanism
is dominant strategy truthful if for all vi, bi, b−i, we
have U(vi, vi, b−i) ≥ U(vi, bi, b−i). We also require
mechanisms to be individually rational. That is,
U(vi, vi, b−i) ≥ 0 for all vi, b−i.

Allocation Rules Determine Prices [22, 2].
If M = (x, p) is a single-dimensional mechanism,
then M is truthful if and only if xi(bi, b−i) is a
monotonically increasing function of bi (regardless of

11



the vector of other bids b−i) and the price function
satisfies

pi(bi) = bixi(bi)−
∫ bi

0

xi(z)dz

where the dependence on b−i has been omitted.
Thus, a monotonic allocation rule immediately spec-
ifies a truthful mechanism for single-dimensional set-
tings.

Monotone Hazard Rate. The hazard rate
function h(v) of a distribution with cumultive dis-
tribution function F (v) and probability density func-

tion f(v) is defined as h(v) = f(v)
1−F (v) . The distribu-

tion has a monotone hazard rate (MHR) if h(v) is
increasing in v.

Virtual Valuations and Revenue. The vir-
tual value of a bidder with value v sampled from
a distribution with CDF F and PDF f is usually

denoted by φ(v), and is equal to v − 1−F (v)
f(v) . The

distribution is called regular if φ(v) is monotonically
increasing in v. It is immediate that all MHR dis-
tributions are regular. Myerson’s famous theorem
shows that in all single dimensional settings, the ex-
pected revenue of a truthful mechanism is exactly its
expected virtual welfare. That is Ev[

∑n
i=1 pi(v)] =

Ev[
∑
i xi(v)φi(vi)].

Posted Price Mechanisms. A single-
dimensional sequential posted price mechanism
(SPM) serves bidders one at a time, offering each a
price upon arrival that depends only on the previ-
ously observed bids and the underlying distributions.
The mechanism maintains a set S of bidders who
have been assigned service, initialized to be ∅,
and adds each bidder to S iff their reported bid
exceeds the price offered. An order-oblivious posted
price mechanism (OPM) is a sequential posted
price mechanism that maintains its approximation
guarantee when the order is chosen by an adversary
instead of the mechanism. 11

Bayesian Multi-parameter Unit-demand
Mechanism Design (BMUMD). In a Bayesian
multidimensional mechanism design problem, there
are n buyers interested in m items for sale. Each
buyer i has a value vij for receiving item j. Let
U = [n] × [m], with the element (i, j) denoting the
event that bidder i receives item j. Further denote
by J the subsets of U corresponding to feasible allo-
cations. That is, a set S ∈ J iff it is feasible to simul-
taneously allocate item j to bidder i for all (i, j) ∈ S.

11We remark that our definition matches that of [18], which
extends the one given in [6].

A setting is said to be unit-demand if for all S ∈ J ,
(i, j) ∈ S ⇒ (i, j′) /∈ S for all j 6= j′ (i.e. it is in-
feasible to allocate any bidder more than one item).
As in [6], we also assume that each vij is sampled
independently from a known distribution Dij . As in
the single dimensional setting, we seek to devise a
truthful mechanism whose expected revenue is (ap-
proximately) optimal with respect to the maximum
over all truthful mechanisms.

C Omitted Proofs and Algorithms from
section 3

We now give a proof of theorem 3.1.

Theorem 1. (Theorem 3.1) If S is an order-
oblivious algorithm for the secretary problem with
competitive ratio α, then PS is a single-sample algo-
rithm for the prophet problem with competitive ratio
α.

Proof. The algorithm PS first permutes the vector
s of samples into a random permutation sj1 , ..., sjn
and takes the first k elements sj1 , ..., sjk of this per-
mutation and passes them as inputs to the secretary
algorithm S. After that, the secretary algorithm S
is passed all the inputs vi where i 6∈ {j1, ..., jk} in an
arbitrary order. Since S is order-oblivious, the set
it selects has a weight of at least α · OPT (v), where
OPT (v) = maxA∈J

∑
i∈A vi. So if we let f(v) denote

the probability density function associated with the
joint distribution D, we have that our algorithm PS
obtains expected reward of at least∫

v

f(v)α ·OPT (v)dv

The prophet’s expected reward is

OPT =

∫
v

f(v) ·OPT (v)dv

which immediately says that PS obtains compet-
itive ratio α, completing the proof.

C.1 Existing order-oblivious secretary algo-
rithms. In the complete version of the paper, we
overview the existing secretary algorithms used in
this paper and argue why they are order-oblivious.
The arguments are omitted in this version for space
considerations [4].

D Omitted Proofs from Section 5

Theorem 2. (Theorem 5.1) The algorithm
PMatching guarantees a 1

6.75 competitive ratio for
environments I that are degree-d bipartite matchings.



Proof. Let v = (v1, ..., v|E|) be drawn from a joint
distribution D1 × ... × D|E|. Recall that Te(v−e) =
inf{ve : e is in the maximum weight matching, given
all other weights are v−e}. Thus, the optimal offline
algorithm selects a matching that has an expected
weight of

|E|∑
e=1

Prv←D[ve ≥ Te(v−e)] · Ev←D[ve|ve ≥ Te(v−e)]

Let qe = Prv←D[ve ≥ Te(v−e)] and recall that

pe = Te(s
Index(e)
−e ). Since sIndex(e) is a sample drawn

from the same distribution that v is drawn, we have
that Pr[ve ≥ pe] = qe. We also have E[ve|ve ≥ pe] =
Ev←D[ve|ve ≥ Te(v−e)]. So we can write the optimal
reward as

OPT =
∑
e

Pr[ve ≥ pe]E[ve ≥ pe].

What is the reward obtained by our algorithm
PMatching? Recall that PMatching first sets a price
pe for each edge e. When the value ve is revealed,
the algorithm flips a coin ce that is equal to one with
probability 1

3 , and accepts e if and only if ce = 1
and ve ≥ pe and A ∪ {e} is an independent set (i.e.
a matching in the given bipartite graph). For each
edge e ∈ E, define the following three random events

1. ce = 1,

2. ve ≥ pe,

3. A ∪ {e} is an independent set.

Call these events Xe, Ye and Ze, respectively.
Thus, the expected reward obtained by

PMatching is

W =
∑
e

Pr[Xe and Ye and Ze] · E[ve|Xe, Ye, Ze]

Clearly, Xe is independent from Ye, Ze and ve. This
means we can write

W =
∑
e

1

3
Pr[Ye and Ze] · E[ve|Ye, Ze].

However, Ye and Ze are not necessarily independent.
Recall that Ze = “A ∪ {e} is an independent set”,
where A is the set of items accepted before e, and
Ye = “ve ≥ p′′e . The price pe depends on a sample
sIndex(e) that may have been used to price an edge e′

arriving before e, and hence to influence the set A.

For any edge e = (`, r), we can define the
following two events E1, E2, stating that no other
edge e′ incident to ` and no edge e′ incident to r
get chosen by P

E1 = {e′ = (`, r′) : e′ 6= e ∧ ve′ ≥ pe′ ∧ ce′ = 1} = ∅

E2 = {e′ = (`′, r) : e′ 6= e ∧ ve′ ≥ pe′ ∧ ce′ = 1} = ∅
If both events E1 and E2 hold, then A ∪ {e}

will always be an independent set. Recall that edge
e’s contribution to the PMatching’s expected reward
is 1

3Pr[Ye and Ze] · E[ve|Ye and Ze]. Since Ze always
holds whenever both E1, E2 hold, we have

Pr[Ye ∧ Ze]·E[ve|Ye ∧ Ze] ≥
Pr[Ye ∧ E1 ∧ E2] · E[ve|Ye ∧ E1 ∧ E2].

Note that events E1, E2 only depend on values
ve′ and prices pe′ for e′ 6= e. Since D is a product
distribution, ve is independent of ve′ . Also, since e, e′

share a vertex, we have that the prices pe, p
′
e are de-

termined using different samples sIndex(e), sIndex(e
′).

Thus Ye is independent of E1 and of E2. This means
that we can write

Pr[Ye and E1 and E2] · E[ve|Ye and E1 and E2]

= Pr[E1 and E2] · Pr[Ye] · E[ve|Ye].

Thus, it suffices to give a a constant lower bound
on Pr[E1 and E2] in order to guarantee a constant
factor competitive ratio for PMatching.

We now follow a line of argument from Chawla,
Hartline, Malec and Sivan [6]. Since the edges in a
maximum matching form an independent set, and the
probability of any edge e being present in a maximum
matching is Pr[ve ≥ pe] = Pr[Ye], we have∑

e′:e′=(`,r′)

Pr[Ye′ ] ≤ 1

∑
e′:e′=(`′,r)

Pr[Ye′ ] ≤ 1.

Now, the probability of PMatching choosing an el-
ement i is Pr[Xe and Ye and Ze] ≤ Pr[Xe] ·Pr[Ye] =
1
3Pr[Ye], so we have∑

e′:e′=(`,r′)

Pr[Xe and Ye and Ze] ≤
1

3

∑
e′:e′=(`′,r)

Pr[Xe and Ye and Ze] ≤
1

3
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This means that the probability that event E1

does not happen is at most 1
3 , and analogously for

event E2. Thus, Pr[E1] ≥ 2
3 , P r[E2] ≥ 2

3 . Since
events E1 is more likely to happen when event E2

happens, we have

Pr[E1 and E2] ≥ Pr[E1] · Pr[E1|E2] ≥ 2

3
· 2

3
=

4

9
.

We can conclude that

W =

n∑
i=1

Pr[Xi and Yi and Zi] · E[vi|Xi, Yi, Zi]

=

n∑
i=1

1

3
Pr[Yi and Zi] · E[vi|Yi, Zi]

≥
n∑
i=1

1

3
Pr[Yi] · Pr[E1 and E2] · E[vi|Yi]

≥
n∑
i=1

1

6.75
Pr[Yi] · E[vi|Yi]

=
1

6.75
OPT

We remark that the only place where we needed d2

samples was to argue that any two incident edges e, e′

have independent prices pe, p
′
e. For general bipartite

matchings, if we have |E| samples s1, ..., s|E|, we can
use sample se to compute pe, and then all prices are
independent. Thus, our algorithm can be used for
general matchings if we have access to |E| samples
from D.

E Omitted Proofs from Section 6

Lemma E.1. ([3]12) Let J be any downwards-closed
set system and let each Di be regular (not necessarily
identical). Let M be a mechanism such that the lazy
combination of M with monopoly reserves has an ex-
pected revenue competitive ratio of α. Then the lazy
combination of M with single sample reserves13 ob-
tains an expected revenue competitive ratio of α

2 .14

12This result was stated for VCG auctions, but it applies
without modifying the proof to any auction that approximately
maximizes welfare. We note that Dhangwatnotai, Roughgar-
den and Yan proved this result for VCG auctions with sample
reserves. [11]. We also note that the result depends on the fact,

proved in [11], that when there is only a single-buyer with dis-
tribution D, the mechanism that offers a posted price equal to

a sample from D obtains 1
2

of the optimal revenue.
13Sample each bidder’s reserve ri independently from Di
14We could also replace the median with the pth quantile

and get a competitive ratio of α ·min{p, 1 − p}. Any error in

approximating the median (or quantile) is directly absorbed
into the competitive ratio as well.

Furthermore, if M obtains expected welfare competi-
tive ratio of β, then the lazy combination of M with
single sample reserves or median reserves obtains ex-
pected welfare competitive ratio of β

2 .

Proposition E.1. ([11]) Let J be any downwards-
closed set system, and let each Di be MHR. Let
also M be any single-dimensional universally truthful
mechanism15 whose expected welfare competitive ratio
is α. Then the mechanism M′ that combines (lazily)
M with monopoly reserves has a revenue competitive
ratio of α

e .

In order to prove Proposition E.1, we need to
borrow a lemma from Yan [25].

Lemma E.2. ( [25]) Let D be an MHR distribution
with Myerson reserve r∗. Let also V (t) denote the
expected welfare of the single bidder mechanism that
sets price t, and R(t) denote the expected revenue of
the single bidder mechanism that sets price t (when
the bidder’s value is drawn from D). Then:

R(max{t, r∗}) ≥ 1

e
V (t)

The proof of Proposition E.1 parallels that of
Theorem 4.9 from [25], but replaces VCG with an
arbitrary truthful mechanism. We again note that it
is observed in [11] that their proof for VCG applies
to any approximation algorithm, but as their setting
and claim is slightly different, we repeat it here for
clarity.
Proof of Proposition E.1: Observe first that if we
prove the claim for deterministic mechanisms, then
the claim immediately follows for universally truth-
ful mechanisms as well. So we can fix bidder i and
v−i for the remaining bids and look at the conditional
expected revenue from bidder i in this case. For de-
terministic mechanisms M, there is some threshold t
such that bidder i wins the item if and only if his value
is above t. So the conditional contribution to the ex-
pected welfare of M is V (t), and the conditional con-
tribution to the expected revenue of the lazy combi-
nation of M with Myerson reserves is R(max{t, r∗i }).
By Lemma E.2, this is at least 1

eV (t). So in all cases,
the conditional contribution to the expected revenue
of the lazy combination of M with Myerson reserves
is at least a 1

e fraction of the conditional contribu-
tion to the expected welfare of M, and therefore the

15A mechanism is universally truthful if it is a distribution
over deterministic truthful mechanisms. All posted-price
mechanisms are universally truthful.



expected revenue of M combined lazily with Myer-
son reserves is at least a 1

e fraction of the expected
welfare of M. As the optimal expected welfare upper
bounds the optimal expected revenue, this completes
the proof. �

To prove Theorem 6.1 for the lazy combination
with Myerson reserves, we need a technical lemma
regarding properties of comparison-based algorithms.
Lemma E.3 below says that in order for a comparison-
based mechanism to achieve good welfare, it must
accept a good fraction of the highest bidders in
expectation (where “good fraction” means relative to
the best possible).

Lemma E.3. Let M be any comparison-based mecha-
nism for feasibility constraints J whose expected wel-
fare competitive ratio is α. Fix an ordering of bid-
ders x1, . . . , xn and relative ordering of values v1 >
. . . > vn (but not the values themselves). Let also
J(i) = maxS∈J {|S ∩ {1, . . . , i}|}, and qj denote the
probability that M selects xj. Then for all i, we have:∑

j≤i

qj ≥ αJ(i)

Proof. Observe first that qj is well-defined: As M is a
comparison-based mechanism, once we fix the bidders
and their relative ordering of values, the behavior of
the mechanism is also fixed, independent of what the
actual values are. So assume for contradiction that
the lemma is false, and let i be an index for which∑
j≤i qj < αJ(i). Then set vj = 1 for all j ≤ i and

vk = 0 for all k > i. Then M obtains expected welfare∑
j≤i qj < αJ(i), and the optimal mechanism obtains

expected welfare J(i). So M does not have expected
welfare competitive ratio α.

Theorem 3. (Theorem 6.1) Let J be any
downwards-closed set system, and let each Di be
identical and regular. Let also M be any single-
dimensional comparison-based mechanism whose
expected welfare competitive ratio is α. Then the
mechanism that combines (either eagerly or lazily)
M with monopoly reserves has expected revenue
competitive ratio α.

Proof. We first recall Myerson’s lemma that expected
revenue (for all truthful mechanisms) is exactly ex-
pected virtual welfare [22]. We now make the same
observation as [6]: if we run a good welfare mecha-
nism on the virtual values instead of the values, then
the welfare guarantee of the original mechanism im-
mediately gives us a virtual welfare (i.e. revenue)

guarantee. As the original mechanism was truth-
ful, its allocation rule must have been monotone, and
therefore whenever the virtual valuation function, φi,
is monotone, the resulting mechanism is also truthful.
φi is monotone exactly when Di is regular.

So the mechanism we would like to implement
is M on the virtual values (which we will denote
by φ(M)), but we want to implement φ(M) without
knowing the virtual values. Because each Di is iden-
tical and regular, whenever φ(M) wants to compare
two virtual values, we can just compare the values in-
stead. This is because the comparison will yield the
same result. So all that’s left is to handle negative
virtual values.

We could just remove all negative virtual values
first, and then run φ(M) on the remaining bidders.
This is exactly the same as removing all bidders who
don’t meet their Myerson reserve first, and running
M on the remaining bidders by the observation in the
previous paragraph. As M obtains expected welfare
competitive ratio α when all values are positive,
we get that φ(M) obtains expected virtual welfare
(revenue) competitive ratio α when run only on
bidders with positive virtual values. Therefore, the
eager combination of M with Myerson reserves gives
a revenue competitive ratio of α.

We also could just run φ(M) first, and remove
the negative virtual values after. However, it’s not
obvious that this mechanism succeeds, as we are no
longer directly running φ(M) on bidders with positive
virtual value. Nevertheless, we can use Lemma E.3
to argue that we still get good revenue with lazy
removal of negative virtual values. For any fixed
bids, relabel the bidders so that v1 > . . . > vn. Let
m denote the largest index such that vm ≥ 0, and
qj denote the probability that M selects bidder xj ,

and Qi =
∑i
j=1 qj . Then we can write the expected

virtual welfare of φ(M) with lazy removal of negative
virtual values as:

m∑
j=1

qj · φ(vj) = Qm · φ(vm)+

m−1∑
i=1

Qi · (φ(vi)− φ(vi+1))

We can also let pj = 1 if Myerson’s auction selects

xj and 0 otherwise, and Pi =
∑i
j=1 pj . Then the

expected revenue of Myerson’s auction is just:

Pm · φ(vm) +

m−1∑
i=1

Pi · (φ(vi)− φ(vi+1))

15



Again let J(i) denote the maximum size of a
feasible set in J using only bidders in {x1, . . . , xi}.
Then we clearly have Pi ≤ J(i). By Lemma E.3, we
also have Qi ≥ α · J(i). Putting this together with
the above work we get:

Qm · φ(vm) +

m−1∑
i=1

Qi · (φ(vi)− φ(vi+1))

≥ α · J(m) · φ(vm) +

m−1∑
i=1

α · J(i) · (φ(vi)− φ(vi+1))

and

Pm · φ(vm) +

m−1∑
i=1

Pi · (φ(vi)− φ(vi+1))

≤ J(m) · φ(vm) +

m−1∑
i=1

J(i) · (φ(vi)− φ(vi+1))

which exactly says that the expected virtual
welfare competitive ratio of φ(M) with lazy removal
of negative virtual values is α. Again, we observe that
this is exactly the same mechanism as M combined
lazily with Myerson reserves and complete the proof
of the Theorem.

Theorem E.1. Let J be a downwards-closed set
system and let each Di be identical and regular.
Then there exist truthful OPMs with the following
guarantees:

1. When J is a k-uniform matroid, a revenue
competitive ratio of 1

2 − O( 1√
k

) and a welfare

competitive ratio of 1
2−O( 1√

k
) using two samples

from D.16

2. When J is a graphic matroid, a revenue compet-
itive ratio of 1

16 , and a welfare competitive ratio
of 1

16 using one sample from D.

3. When J is a transversal matroid, a revenue
competitive ratio of 1

32 and a welfare competitive
ratio of 1

32 using one sample from D.

16Alternatively, instead of using the rehearsal algorithm, we

can use a simpler single-sample algorithm which guarantees a
competitive ratio of 1

4
for the prophet problem. Recall that our

motivation for the rehearsal algorithm was purely algorithmic:

we want to obtain a single-sample prophet inequality whose
competitive ratio of 1−O( 1√

k
) is asymptotically optimal in k.

While this motivation still holds from an algorithmic point of
view, its not very strong in a mechanism design setting since

our use of reserves reduces the competitive ratio by a factor of
at least 1

2
.

4. When J is a laminar matroid, a revenue com-
petitive ratio of 1

24
√
3

and a welfare competitive

ratio of 1
24
√
3

using one sample from D.

5. When J is a general matroid, a revenue compet-

itive ratio of
1− 1

e

40 and a welfare competitive ratio

of
1− 1

e

40 using one sample from D.

6. When J is a degree d-bipartite matching, a
revenue competitive ratio of 1

27 and a 1
27 welfare

competitive ratio using d2 + 1 samples from D.

Our results for MHR distributions are very sim-
ilar, with the exception that for the MHR case, our
PMatching algorithm is the same one as the one de-
scribed in section 5.

Theorem E.2. Let J be a downwards-closed set
system and let each Di be MHR (not necessarily
identical). Then there exist truthful OPMs with the
following guarantees:

1. When J is a k-uniform matroid, a revenue
competitive ratio of 1

2e − O( 1√
k

) and a welfare

competitive ratio of 1
2−O( 1√

k
) using two samples

from D.

2. When J is a graphic matroid, a revenue compet-
itive ratio of 1

16e , and a welfare competitive ratio
of 1

16 using one sample from D.

3. When J is a transversal matroid, a revenue
competitive ratio of 1

32e and a welfare competitive
ratio of 1

32 using one sample from D.

4. When J is a laminar matroid, a revenue com-
petitive ratio of 1

24e
√
3

and a welfare competitive

ratio of 1
24
√
3

using one sample from D.

5. When J is a degree d-bipartite matching, a
revenue competitive ratio of 1

13.5e and a 1
13.5

welfare competitive ratio using d2 + 1 samples.

F The Free-Order Model

In this section, we provide an improved and simplified
analysis of the secretary algorithm in the free-order
model proposed by Jaillet, Soto, and Zenklusen [16].
It is easy to see that their algorithm satisfies a modi-
fied definition of “order-oblivious” from Section 3 ap-
propriate for the free-order model (the algorithm can
choose the order of P instead of having them come in
adversarial order), meaning that their algorithm im-
plies a single-sample prophet inequality for the free-
order model as well. Let’s first recall their algorithm:



1. Initialize the set of accepted elements, A, to ∅.
2. Sample k = Binomial(n, 1/2) elements uni-

formly at random from U and call these the sam-
ple set, S. Call the remaining elements P .

3. Find the max-weight basis of S under J . Label
these elements in decreasing order of weight,
X1, . . . , Xk.

4. Set i = 1.

5. Draw one at a time in any order each
element y ∈ P ∩ (span({X1, . . . , Xi}) −
span({X1, . . . , Xi−1})). Add y to A iff A∪{y} ∈
J and vy > vXi

.

6. Increment i by one and return to step 5. If
i = k, and there are any elements not spanned
by {X1, . . . , Xm}, process them as in step 5.

We first recall a lemma from [16]:

Lemma F.1. ([16]) If y is in the max-weight basis
of U under J , and y ∈ P , then we will always have
vy > vXi

when it is processed in step 5. The only way
the algorithm will not accept y is if A already spans
y.

Proof. By definition, we know that y ∈
span({X1, . . . , Xi}), and vX1 > . . . > vXi . So
if vy < vXi

, greedy would not select y, and y cannot
possibly be in the max-weight basis of U under J .

Definition 3. Let Z1, . . . , Zm′ list elements of S in
decreasing order of weight for any S ⊆ U . Let i(y) be
the minimum i such that y ∈ span({Z1, . . . , Zi}) (if
one exists). Then we say the cost of y with respect to
S is v(Zi(y)) (or 0 if no i(y) exists). Denote this by
C(y, S).

Lemma F.2. For all y ∈ U , if y ∈ P and C(y, S) >
C(y, P −{y}), A will not span y when it is processed
by the algorithm in step 5.

Proof. First, we observe by the definition of the
algorithm that when y is processed, the only elements
that could possibly be added to A are of weight at
least vXi

. So if y is already spanned, it must be
spanned by a subset of P − {y} whose elements all
have weight at least vXi . However, it is obvious
that C(y, S) = vXi . It is also obvious that if y
is spanned by a subset of P − {y} whose elements
all have weight at least vXi

, that C(y, P − {y}) is
at least vXi

. Therefore, if A spans y at the time
the algorithm processes y, it must be the case that
C(y, P − {y}) > C(y, S), proving the lemma.

Theorem F.1. The algorithm of [16] obtains a com-
petitve ratio of 1

4 whenever J is a matroid.

Proof. Clearly, for all y, y ∈ P with probability 1/2.
Conditioned on this, it is also clear that C(y, S) >
C(y, P − {y}) with probability 1/2. This is because
whenever we sample P−{y} and S, they are switched
with probability 1/2 and the costs are flipped as well.
By Lemma F.1 and F.2, every element in the max-
weight basis of U under J , y, is accepted whenever
y ∈ P and C(y, S) > C(y, P − {y}). As this
happens with probability 1/4, every element of the
max-weight basis is accepted with probability 1/4, so
the algorithm obtains a competitive ratio of 1/4.

G Analysis of the Rehearsal Algorithm

In this appendix we prove Theorem 4.1

Theorem 4. (Theorem 2) Let I = (U ,J ) be a
k-uniform matroid. The rehearsal algorithm is a
single-sample algorithm for the prophet problem with
a competitive ratio of 1−O( 1√

k
).

G.1 Part I: The worst adversarial ordering
and defining the random walk RW . Here, we
provide the first step in analyzing the rehearsal algo-
rithm, reducing the analysis to answering a question
about correlated random walks. We first state a con-
venient property of the rehearsal algorithm. (In fact,
it holds no matter how the thresholds T1, . . . , Tk are
set.)

Lemma G.1. For any vector of values v =
(v1, v2, ..., vn), and any thresholds T1, . . . , Tk, the
worst-case order for the rehearsal algorithm is when
the values vi are revealed in increasing order.

Proof. Consider any fixed v1, . . . , vn and T1, . . . , Tn
and assume w.l.o.g. that v1 < . . . < vn. Also,
say there exists some j, j′ such that vj is revealed
right before vj′ and vj > v′j . Clearly, such j, j′ exist
whenever the values are not revealed in increasing
order. We now want to consider the behavior of the
rehearsal algorithm if we swap the order in which vj
and vj′ are revealed.

First, observe that whether vi is accepted or not
depends only on what slots are available when vi is
revealed and not on what elements already filled the
slots that are not available. So let S denote the set
of available slots right before vj is revealed. Let Sj
denote the subset of S of slots whose threshold is
below vj , and Sj′ the subset whose threshold is below
vj′ . Since vj′ < vj , we have that Sj′ ⊆ Sj . Now we
consider a few cases:

17



First, maybe Sj = ∅. Then no matter what order
vj and vj′ are revealed in, the rehearsal algorithm will
reject them both and the same set of thresholds will
be available to the remaining elements. So the set of
accepted elements will be exactly the same regardless
of the order of vj and vj′ .

Second, maybe Sj′ = ∅, Sj 6= ∅. Then no matter
what order vj and vj′ are revealed in, the rehearsal
algorithm will reject vj′ and accept vj to fill the lowest
available slot in Sj . So the same set of thresholds will
be available to the remaining elements and the set of
accepted elements will be exactly the same regardless
of the order of vj and vj′ .

Third, maybe Sj = Sj′ and |Sj | ≥ 2. Then
no matter what order vj and vj′ are revealed, the
rehearsal algorithm will accept both vj and vj′ and
fill the two lowest slots of Sj . So the same set of
thresholds will be available to the remaining elements
and the set of accepted elements will be exactly the
same regardless of the order of vj and vj′ .

Fourth, maybe |Sj | > |Sj′ | > 0. Then no matter
what order vj and vj′ are revealed, vj will fill the
slot of Sj with the highest threshold value (which is
necessarily not in Sj′), and vj′ will fill the slot in Sj′

with the highest threshold value. So the same slots
will be available to the remaining elements and set of
accepted elements will be exactly the same regardless
of the order of vj and vj′ .

Finally, maybe Sj = Sj′ and |Sj | = 1. Then
whichever of vj and vj′ is revealed first will fill the sin-
gle available slot. The second will be rejected. How-
ever, the same slots will be available to the remaining
elements regardless of their order, so the exact same
set of remaining elements will be accepted. The only
difference is whether vj or vj′ was accepted. This
is the only case where the set of accepted elements
will differ, and it differs exactly by replacing vj with
vj′ , which strictly increases the value of accepted el-
ements.

So we can start from any ordering of the vi’s
and swapping elements a finite number of times until
the vi’s are sorted so that the values are revealed
in increasing order. By the above argument, we did
not improve the value of accepted elements at any
swapping step. Therefore, revealing the vi’s in order
of increasing values is indeed the worst-case order for
the rehearsal algorithm.

Using Lemma G.1, we may assume w.l.o.g. that
all elements are revealed so that the values are in
increasing order. Using this, we will now reduce
the problem of analyzing the rehearsal algorithm
to answering a question about correlated random

walks. When we run the rehearsal algorithm, the
following experiment happens. First, a sample vector
s = (s1, ..., sn) is drawn from D and thresholds
T1, . . . , Tk are set. Then, values v1, ..., vn are revealed
in increasing order and accepted/rejected according
to the algorithm. Instead, imagine the following
equivalent experiment. First, two samples are taken
from each Di, yi and y′i. Then, independently for
all i, we permute the pair (yi, y

′
i) to determine which

element is a “sample” and which one is a “value.”
That is, we set vi = yi and si = y′i with probability
1
2 , or vi = y′i and si = yi with probability 1

2 . We
will show that, for any y1, y

′
1, ..., yn, y

′
n, the rehearsal

algorithm obtains good reward in expectation, where
the expectation is taken over the coin tosses that
determine which of (yi, y

′
i) is a “value” and which

one is a “sample.”
Fix the list y1, y

′
1..., yn, y

′
n and let Yj denote the

jth highest value of this list. Let pj denote the
probability, over the randomness of the coin flips,
that the prophet selects Yj (i.e. the probability that
Yj is one of the k largest “values”). Let’s observe
a simple upper bound on the expected value the
prophet attains with samples Y1, . . . , Y2n:

Observation 1.
∑2n
j=1 pj · Yj ≤

∑2k
j=1

1
2 · Yj.

Proof. The prophet chooses element Yj with proba-

bility pj . Thus OPT =
∑2n
j=1 pjYj . Since the prophet

cannot select more than k items, we must have∑2n
j=1 pj ≤ k. Furthermore, each Yj has a 1

2 chance
of being a “sample” and thus the prophet will never
choose it. Thus pj ≤ 1

2 for all j. Since Y1 ≥ ... ≥ Y2n,

these constraints imply that
∑2n
j=1 pjYj ≤

∑2k
j=1

1
2Yj .

Our goal is to show that the gambler can guar-
antee a reward of (1−O( 1√

k
)) ·OPT by using the re-

hearsal algorithm. Let qj denote the probability that
the rehearsal algorithm selects Yj . By Observation 1,

it suffices to show that
∑2k
j=1 qjYj ≥ c

2

∑2k
j=1 Yj for

c = 1−O( 1√
k

). In fact, a sufficient condition for this

is that
∑i
j=1 qj ≥ ci/2 for all i ≤ 2k.17

The rest of this section is spent proving this
claim. We do this by defining a random walk RW
associated with the performance of the rehearsal
algorithm. The random walk starts at 0 and goes
up or down depending on whether Yj is a “sample”
or a “value”. A formal definition of RW is on the
following page.

17It is easy to see that minimizing
∑

j qjYj subject to this
condition will set qj = c/2 for all j ≤ 2k.



To clarify, if Yj is a “value,” the walk moves down
by 1 at step j. If Yj is a “sample” and would have
set a threshold, the walk moves up by 1 at step j.
If Yj is a “sample” and would have set the threshold

that is repeated 2
√
k+ 1 times, then the walk moves

up by 2
√
k + 1 at step j. If Yj is a “sample” and

would not have set a threshold, the walk does not
move at step j. Now we state some facts that relate
the performance of the rehearsal algorithm to facts
about this random walk. Still assuming that all xi are
revealed so that the values are in increasing order, we
show how to figure out, just by looking at this random
walk, which elements are selected by the rehearsal
algorithm. We first need a definition and some facts.
Figure G.1 illustrates these facts, assigning different
colors to accepted and rejected values, as well as filled
and unfilled thresholds.

Random Walk RW

1 Define RW (0) = 0.

2 For j > 0, given the value RW (j−1) of the
random walk at time j− 1, define the value
RW (j) of the random walk at time j as:

2.a RW (j) = RW (j − 1) − 1 if Yj is a
“value”.

2.b RW (j) = RW (j − 1) + 1 if Yj is
a “sample,” and there are at most
k − 2

√
k − 2 different i < j that are

also “samples.”

2.c RW (j) = RW (j − 1) + 2
√
k + 1 if Yj

is a “sample,” and there are exactly
k − 2

√
k − 1 different i < j that are

also “samples.”

2.d RW (j) = RW (j − 1) if Yj is a “sam-

ple,” and there are at least k − 2
√
k

different i < j that are also “samples.”

Definition 4. For any j, HR
j (RW ) is the height of

RW to the right of j. Or formally, HR
j (RW ) =

maxi≥j{RW (i)−RW (j)}. Similarly, HL
j (RW ) is the

height of RW to the left of j. Formally, HL
j (RW ) =

maxi≤j{RW (i)−RW (j)}.

If it is clear from context, we will just write
HL
j instead of HL

j (RW ). We can now prove two
facts about this random walk and its relation to the
rehearsal algorithm when values are revealed by the
adversary in increasing order.

Fact G.1. Assuming that the vi are revealed so that
the values are in increasing order, for all j, Yj is

HL
i

HR
i

i

}{
 Jump

Monday, November 5, 12

Figure 1: An illustration of our random walk. The
steps in blue correspond to selected values (since the
random walk returns to these values eventually), the
values in red correspond to rejected values. The
samples in black are unfilled thresholds, the sam-
ples in green are filled thresholds. The samples in
yellow are samples that do not determine a thresh-
old. Notice that there’s a threshold that produces a
large jump in the random walk. We also highlight
a point i, together with its corresponding left and
right heights. The value is accepted because its right
height is greater than zero. The number of values to
the left that are not accepted is exactly HL

i −HR
i .

chosen by the rehearsal algorithm if and only if Yj is
a “value” and HR

j > 0.

Proof. If HR
j > 0, then there is some i > j with

RW (i) > RW (j). RW increases every time it sees
a threshold, and decreases every time it sees a value.
So that means that there are more thresholds than
“values” in the list (Yj+1, ..., Yi). This necessarily
means that the first “value” revealed that is at least
Yj will be selected, because there will be at least
one available threshold between Yi and Yj . Because
we are assuming that the values are revealed in
increasing order, Yj is exactly the first value revealed
that is at least Yj , and is therefore selected.

If RW (i) ≤ RW (j), then there are at least
as many “values” as there are thresholds in the
list (Yj+1, ..., Yi). Because the values are revealed
in increasing order, this means that the slot using
threshold Yi will certainly be filled before Yj is
revealed. If HR

j = 0, then it is true that RW (i) ≤
RW (j) for all i > j, which means that all possible
slots that Yj could use will be filled before Yj is
revealed, and therefore Yj will not be selected by the
rehearsal algorithm.

Fact G.2. For all i, the number of “values” in
{Y1, ..., Yi} that are not selected by the rehearsal
algorithm is max{HL

i −HR
i , 0}.
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Proof. Let j1, . . . , jh denote the indices of the “val-
ues” in (Y1, ..., Yi) that are not selected by the re-
hearsal algorithm in increasing order. We show that
HL
i −HR

i = h by first showing that HL
i −HR

i ≥ h,
and then showing that HL

i −HR
i ≤ h.

For any index k in {1, ..., h}, Yjk is not selected.
Thus, Fact G.1 tells us that it must be the case that
RW (z) ≤ RW (jk) for all z ≥ jk. In particular,
this must hold for z = jk+1 − 1. Because Yjk+1

is a
“value”, we know thatRW (jk+1) = RW (jk+1−1)−1,
and therefore RW (jk+1) ≤ RW (jk) − 1. Chaining
this together for all k in {1, ..., h}, we get that
RW (jh) ≤ RW (j1)−(h−1). Because j1 is a “value”,
RW (j1) = RW (j1− 1)− 1, which means that we get
RW (jh) ≤ RW (j1 − 1)− h.

Since jh is the index of a “value” that was not
selected by the rehearsal algorithm, we know from
fact G.1 that RW (z) ≤ RW (jh) for all indices z ≥ jh
(which includes all z ≥ i, since jh ∈ {1, ..., i}).
Let m = RW (jh) − RW (i) and note that HL

i ≥
RW (j1)− RW (i) ≥ h+ RW (jh)− RW (i) = h+m.
Furthermore, since RW (z) ≤ RW (jh) for all z ≥ i,
we have HR

i ≤ RW (jh)− RW (i) = m. We conclude
that HL

i −HR
i ≥ h+m−m = h.

Let H = HL
i − HR

i . We will show that H ≤ h,
thus concluding the proof. Since HL

i = HR
i + H,

there exists an index j ∈ {1, ..., i} such that RW (j) =
RW (i) + HR

i + H. So, for every k in {1, ...,H},
choose jk to be the largest index in {1, ..., i} such that
RW (jk − 1) ≥ RW (i) + HR

i + k. By this definition,
we have RW (jk) < RW (i) +HR

i + k ≤ RW (jk − 1),
and thus the random walk goes down at step jk. This
means that Yjk is a “value”. Furthermore, the value
Yjk is not selected by the rehearsal algorithm because
HR
jk

= 0. To see this, note that for any index j
between jk and i, we have RW (j) ≤ RW (jk) by the
definition of jk (otherwise jk would not be the largest
index satisfying RW (jk − 1) ≥ RW (i) + HR

i + k).
Furthermore, for every index j ≥ i, we have RW (j) ≤
RW (i) + HR

i < RW (i) + HR
i + k ≤ RW (jk − 1) =

RW (jk) + 1. Thus, we have RW (j) ≤ RW (jk) for
every j > jk. By Fact G.1 this implies that Yjk is
a value that does not get selected by the rehearsal
algorithm. We showed in this paragraph that there
are at least H = HL

i − HR
i such values. In the

previous paragraph we show that there are at most
H such values. Thus, we conclude that the number
of values in {1, ..., i} that are not selected by the
rehearsal algorithm is exactly HL

i −HR
i .

The expected number of “values” in {Y1, ..., Yi}
is i

2 . By Fact G.2, we have that the expected number
of values in {Y1, ..., Yi} selected by the rehearsal

algorithm is i
2 − E[max{HL

i − HR
i , 0}], where the

expectation is taken with respect to the coin tosses of
the random walk. Thus, to show that

∑i
j=1 qj ≥ ci

2

for c = 1 − d√
k

(where we have made explicit the

constant d in O( 1√
k

)), it suffices to show that

E[max{HL
i −HR

i , 0}] ≤
d · i
2
√
k
.

Due to space restrictions, a proof of this inequality
can be found in the complete version of the paper [4].


