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Prophet inequalities have recently become a fundamental tool in the design of sequential 
and multi-dimensional mechanisms in Bayesian settings. However, existing mechanisms—
as well as the underlying prophet inequalities behind their analysis—require sophisticated 
information about the distribution from which inputs are drawn.
Our goal in this work is to design prior-independent sequential and multi-dimensional 
mechanisms. To this end, we first design prophet inequalities that require knowing only a 
single sample from the input distribution. These results come in two forms: the first is via 
a reduction from single-sample prophet inequalities to secretary algorithms. The second is 
via novel single-sample prophet inequalities for k-uniform matroids.
Leveraging our new prophet inequalities, we construct the first prior-independent sequen-
tial mechanisms where the seller does not know the order in which buyers arrive, 
and buyers may have asymmetric value distributions. We also construct the first prior-
independent multi-dimensional mechanism where buyers may have asymmetric value 
distributions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Myerson’s seminal paper (Myerson, 1981) shows how to construct a revenue-optimal incentive-compatible mechanism 
when buyers have single-dimensional independent private values, act simultaneously, and the mechanism designer knows 
the exact distributions from which these values are drawn. However, when these conditions are not met, characterizing the 
revenue-optimal mechanism is a notoriously more difficult task. For example, Manelli and Vincent (2007) show that, even 
when there are only two goods for sale and the valuation distributions are uniform over [0, 1], the optimal mechanism 
can be prohibitively complex. Numerous recent works identify further prohibitive complexities, such as non-monotonicity, 
unbounded menu complexity, and computational intractability (Briest et al., 2015; Hart and Nisan, 2013; Daskalakis et al., 
2014, 2015; Hart and Reny, 2015).

In light of these difficulties, recent literature has focused on finding approximately revenue-optimal mechanisms for 
multi-dimensional settings, or those where the seller lacks an accurate prior. Chawla et al. (2010) construct the first mecha-
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nisms that guarantee a constant fraction of the optimal revenue when buyers are unit-demand, and have different valuations 
for different items. They obtain these mechanisms by first finding approximately optimal mechanisms for settings where 
buyers have single-dimensional valuations, but arrive sequentially, and then by showing how to reduce multi-dimensional 
mechanism design problems to sequential mechanism design problems. However, their mechanisms still require precise 
knowledge of the distributions from which buyers’ valuations are known.

In parallel to the multi-dimensional mechanism design literature, many recent results starting with the work of Hartline 
and Roughgarden (2009) and Dhangwatnotai et al. (2010) focus on prior-independent mechanisms for single-dimensional 
settings. These mechanisms do not require that the seller know the entire distribution of bidder valuations. Instead, they 
assume that the seller can only observe a single sample from these distributions.

Prior work has indeed considered both lines of work together, although results are limited. For example, Roughgarden 
et al. (2012) and Devanur et al. (2011) provide prior-independent mechanisms in settings with many unit-demand bid-
ders and many items. More recent work of Goldner and Karlin (2016) provides prior-independent mechanisms in settings 
with many additive bidders and many items. Still, all prior work requires bidders to be identically and independently dis-
tributed. In comparison to these works, we construct the first prior-independent, approximately-optimal mechanisms in 
multi-dimensional settings with asymmetric bidders.

The main technical tool in our constructions are new prophet inequalities with limited information, which are informa-
tionally robust variants of the classical prophet inequality. In the classical setting, a gambler observes a sequence V 1, . . . , Vn

of n rewards sampled independently from known distributions D1, . . . , Dn . After seeing the ith reward, the gambler has 
two options: he can stop the game and keep reward V i , or he can continue the game. If he chooses to continue the game, 
he forfeits reward V i forever, and is shown the next reward V i+1. The gambler’s goal is to obtain an expected reward that 
guarantees a constant-fraction of the expected reward obtained by the best offline algorithm, represented by a prophet who 
can observe the values of all the variables V 1, . . . , Vn before making her selection. A seminal result of Krengel et al. (1977, 
1978) states that there is a strategy for the gambler so that his expected reward is at least half of the prophet’s expected 
reward. Owing to their applications in Bayesian mechanism design, there has recently been a renewed interest in prophet 
inequalities, generalizing the problem to settings where the prophet and gambler can choose any k out of the n presented 
items (Alaei, 2011; Chawla et al., 2010), and more generally to settings where the prophet and gambler can choose any 
independent set in a matroid or matroid intersection (Kleinberg and Weinberg, 2012). However, all existing results require 
the gambler to know the distributions D1, . . . , Dn outright (or at least be able to accurately compute expectations of various 
functions over the joint prior).

We show how the gambler can obtain a constant factor of the prophet’s expected reward, even when he only learns a 
single sample from each Di . This approach guarantees, for all distributions D, in expectation over the observed sample and 
the realized state of the world, a constant-factor approximation to the prophet’s expected reward.

1.1. Sequential prior-independent mechanism design

The first step in designing prior-independent multi-dimensional mechanisms is of its own independent interest: the 
construction of single-dimensional prior-independent mechanisms when bidders arrive sequentially, and valuations may be 
drawn from independent but not necessarily identical distributions.

In a sequential single-dimensional mechanism design problem, there are n buyers interested in receiving some service. 
Each buyer i has value vi for receiving service, which is drawn from a distribution Di . The buyers arrive one at a time, and 
the seller must make each buyer a “take-it-or-leave-it” offer for service at a price pi , that may depend on previous offers 
and previous buyers’ choices.

The problem is most interesting when the seller cannot offer service to all buyers simultaneously. That is, there is a 
collection J ⊂ 2{1,...,n} of subsets such that a set S of buyers can be served simultaneously if and only if S ∈ J . For 
example, if the seller has k copies of a good for sale, then only k buyers can be served, implying in this case that J = {S ⊂
{1, . . . , n} : |S| ≤ k}.

Following the lead of Chawla et al. (2010), we consider two variants of this problem. The first is when the seller can 
choose the order in which buyers arrive – such mechanisms are referred to as Sequential Posted Price Mechanisms (SPM’s). 
The second is when the seller does not know the order in which buyers will arrive – such mechanisms are referred to as 
Order-Oblivious Posted Price Mechanisms (OPM’s).

We show a new approximately optimal prior-independent SPM whenever the collection J of feasibility constraints has a 
matroid structure.4 Prior work covers matroid settings when the designer knows the prior (or at least enough information 
to compute virtual values) (Yan, 2011). SPMs are not known to imply multi-dimensional mechanisms, so these results are 
of interest purely as posted-price mechanisms in single-dimensional settings.

We further construct prior-independent OPMs for all collections J of feasibility constraints for which prior-independent 
prophet inequalities exist. To this end, we also design new single-sample prophet inequalities (discussed further in Sec-
tion 1.3).

4 That is, J is downwards-closed, contains ∅, and satisfies the augmentation property: for all S, S ′ ∈ J with |S| > |S ′|, there exists some x ∈ S − S ′ such 
that S ′ ∪ {x} ∈ J .
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OPMs are known to imply multi-dimensional mechanisms via the reduction of Chawla et al. (2010) (covered more clearly 
in Section 3), so these results are also of interest for the multi-dimensional mechanisms they imply. In particular, when J
is a bipartite matching, our prior-independent OPM implies a prior-independent multi-dimensional mechanism described 
below.

1.2. Multi-dimensional prior-independent mechanism design

The second contribution of this paper to the mechanism design literature is the construction of the first multi-
dimensional prior-independent mechanisms when bidders’ valuations may be drawn from independent but asymmetric 
distributions.

Consider the following Bayesian multidimensional mechanism design problem: there are n buyers interested in m items 
for sale. Each buyer i has a value vij for receiving item j, drawn from a distribution Di j . The buyers are unit-demand, 
in that their value for a set of items is simply their value for their favorite item in that set. We construct a mechanism 
that guarantees a constant-factor approximation to the expected revenue of the optimal mechanism for multi-dimensional 
unit-demand settings, where the seller only needs to know one sample from each Di j .

We briefly overview how this result is obtained, as it demonstrates the full chain of our tools. We start by treating 
each (bidder, item) pair as an element, and observing that because bidders are unit-demand, it is feasible to simultaneously 
award item j to bidder i (and have bidder i obtain non-zero value for it) for all (i, j) in some set S if and only if S is a 
matching in the bipartite graph where left nodes are bidders and right nodes are items. A recent algorithm of Feldman et 
al. (2018) achieves a 1

256 approximation for the secretary problem in bipartite matching environments (described in further 
detail in the following section). We apply our new reduction (Section 5) to convert their algorithm into a single-sample 
prophet inequality for the same setting that obtains the same competitive ratio.

Ideally, the next step would be to use the machinery of Chawla et al. (2010), and simply run our new prophet inequality 
on the distribution of virtual values, and obtain an OPM for a related single-dimensional copies setting (which essentially 
treats all (i, j) as a distinct bidder rather than bidder i’s value for item j). To do this, we would only require one sample 
from the virtual value distribution. Unfortunately, even obtaining a single sample from the virtual value distribution requires 
extensive information about the underlying value distribution, so this approach is infeasible.

Instead, we develop machinery similar to Hartline and Roughgarden (2009), Dhangwatnotai et al. (2010), which takes our 
new prophet inequality with competitive ratio 1

256 and turns it into a truthful OPM that guarantees a 1
256e approximation 

for the related copies setting, whenever each Di j has a Monotone Hazard Rate (but are not necessarily identical), or a 1
512

approximation whenever the distributions are i.i.d. and regular.
Finally, portions of machinery from Chawla et al. (2010) do still apply and allow us to conclude that any OPM for the 

related copies setting immediately provides the same guarantee for the original multi-dimensional setting (when compared 
against the revenue optimal Dominant-Strategy Incentive Compatible mechanism). The competitive ratio against the optimal 
Bayesian Incentive Compatible mechanism for the same setting is at most an additional factor of 4 smaller (Chawla et al., 
2015; Cai et al., 2016).

So the full approach is to start with the secretary algorithm of Feldman et al. (2018), plug it into our reduction from 
Section 5 to get a new single-sample prophet inequality. Then plug our single-sample prophet inequality into new ma-
chinery based on Hartline and Roughgarden (2009), Dhangwatnotai et al. (2010) to get an OPM for this single-dimensional 
copies setting. Finally, machinery of Chawla et al. (2010) turns this into a truthful mechanism for the original Bayesian 
multi-dimensional setting.

1.3. New prophet inequalities

The key technical contribution that allows us to construct new prior-independent OPMs (and, by the reduction of Chawla 
et al., 2010, referenced above, prior-independent multi-dimensional mechanisms) is our development of limited-information
prophet inequalities. As described above, these are analogous to traditional prophet inequalities, where a gambler must 
choose a feasible set of items that arrive one by one, with the twist that the only information that the gambler has about 
the value of future items is a single sample from their distributions. We derive our limited-information prophet inequalities 
via two different approaches.

1. Reduction from existing secretary problems. In Section 5, we give a black-box reduction that obtains single-sample 
prophet inequalities from existing order-oblivious5 algorithms for the secretary problem.6 The ratio obtained after our 
reduction is exactly the same as the corresponding secretary algorithm. Many existing secretary algorithms are order-
oblivious, listed below:
• k-uniform matroids: A modification of the 1/e-approximation of Babaioff et al. (2007a, 2007b) is order-oblivious and 

achieves a 1/4-approximation. The 1 − O (1/
√

k)-approximation of Kleinberg (2005) is not order-oblivious.

5 We define what order-oblivious algorithms are in Section 5.
6 In the secretary problem, the value of weights can be arbitrary, but the elements are revealed in a random order. In the prophet inequality problem, 

the value of weights come from distributions, but the order in which items are presented can be arbitrary.
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• Graphic matroids: A modification of the 1/(2e)-approximation of Korula and Pál (2009) is order-oblivious and 
achieves an 1/8-approximation.

• Co-graphic matroids: A modification of the 1/(3e)-approximation of Soto (2011) is order-oblivious and achieves a 
1/12-approximation.

• Transversal matroids: Dimitrov and Plaxton’s (2012) 1/16-approximation is order-oblivious. Kesselheim et al. (2013)
1/e-approximation is not order-oblivious (and it does not appear that a simple modification of it is).

• Laminar matroids: Ma et al. (2016) 1/9.6-approximation is order-oblivious.
• Regular and max-flow–min-cut matroids: A modification of the 1/(9e)-approximation of Dinitz and Kortsarz (2014)

is order-oblivious and achieves a 1/36-approximation.
• General matroids: Oveis Gharan and Vondrák’s 1−1/e

40 -approximation in the random assignment model is order-
oblivious. Lachish’s (2014), and Feldman et al. (2015) 1/O (log log k)-approximation in the standard model is order-
oblivious.

• Bipartite matchings: Feldman et al. (2018) 1/256 approximation is order-oblivious.
The astute reader might notice that in the above list, whenever a modification is necessary to make an existing algo-
rithm order-oblivious, the competitive ratio degrades by a factor of e/4. This is essentially due to replacing a subroutine 
that runs Dynkin’s 1/e-approximation for the original secretary problem (Dynkin, 1963) with a sub-optimal algorithm 
and simpler competitive analysis that only proves a 1/4-approximation. More details on this appear in Section 5.

2. Analysis of correlated random walks. The best known secretary algorithms (Kleinberg, 2005) and full-information 
prophet inequalities (Alaei, 2011) for k-uniform matroids both guarantee a 1 − O ( 1√

k
) competitive ratio, but Kleinberg’s 

secretary algorithm is not order-oblivious, and Alaei’s prophet inequality requires heavy knowledge of the distributions. 
In order to asymptotically match this competitive ratio, we give a new algorithm in Section 6, whose analysis mod-
els the drawing of “samples” or “values” as positive and negative steps in a random walk. By estimating the expected 
height of this correlated random walk, we are able to guarantee that each of the top k values (that is, the values that 
are accepted by the optimal offline algorithm) are selected by our online algorithm with probability 1 + O ( 1√

k
).

1.4. Organization

In Section 2 below, we cover related work on prophet inequalities and prior independent mechanism design. In Sec-
tion 3, we provide notation and definitions for the following theorems. We begin our technical Sections by showing how to 
obtain prior independent/limited-information mechanisms from limited-information prophet inequalities in Section 4. Sec-
tions 5 and 6 contain our new prophet inequalities. The results in Section 5 are via a reduction to the secretary problem. 
Section 6 contains our prophet inequality for k-uniform matroids. Since our main results concern OPMs and their implied 
multi-dimensional mechanisms, we delay the treatment of our SPM for matroids to Appendix A.

2. Related work

2.1. Prophet inequalities

The literature on prophet inequalities is large, and we will not try to summarize it all here. Following Krengel, Sucheston, 
and Garling’s seminal work (Krengel and Sucheston, 1977, 1978), Samuel-Cahn (1984) designed an extremely elegant single-
choice prophet inequality guaranteeing the optimal competitive ratio of 2: set a threshold T such that Pr[maxi V i > T ] = 1/2, 
and accept any element that exceeds this threshold. Most related to our work is that on multiple-choice prophet inequalities, 
where the gambler’s reward is equal to the sum of rewards from selected elements. Here, the first results are from Chawla 
et al. (2010) who design constant-factor approximations for uniform matroids, graphic matroids, and bipartite matchings. 
Alaei obtained an asymptotically optimal ratio of 1 − 1/

√
k + 3 for k-uniform matroids (Alaei, 2011). For general matroids, 

Yan (2011) obtained a (1 − 1/e)-approximation when the gambler gets to choose the order, and Kleinberg and Weinberg
(2012) obtained a 1/2-approximation in the general case. In comparison, our new prophet inequalities, in settings where 
they apply, match the asymptotic guarantees of prior work while only requiring a single sample from each distribution 
instead of outright knowledge.

Our work also provides a formal connection between the secretary problem and prophet inequalities. Independently, 
Göbel, Hoefer, Kesselheim, Schleiden, and Vöcking also discover a formal connection (Göbel et al., 2014). In our work, we 
show that certain kinds of secretary algorithms imply single-sample prophet inequalities. Göbel et al. instead pose a more 
general problem, such that both prophet inequalities and secretary problems are special cases. In other words, any solution 
to their problem immediately imply both prophet inequalities and secretary problems. Aside from the fact that both works 
provide the first formal connections between secretary problems and prophet inequalities, it is unclear that these results 
are further related.

2.2. Prior independent mechanism design

Myerson’s seminal work (Myerson, 1981) shows how to find the revenue-optimal auction in any single-dimensional 
setting, so long as the designer has enough information about the prior to compute “virtual values.” Another seminal work 
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of Bulow and Klemperer (1996) showed the following: in single-item settings, if all bidders are i.i.d. and have values drawn 
from regular distributions, the revenue of a second price auction (with no reserve) with an additional bidder is always 
larger than the revenue of Myerson’s optimal auction in the original setting. More recent seminal work of Hartline and 
Roughgarden (2009) provided approximate Bulow–Klemperer type Theorems for more general single-dimensional settings 
with asymmetric bidders – in many cases, running the Vickrey–Clarke–Groves mechanism (Vickrey, 1961; Clarke, 1971;
Groves, 1973) with additional bidders gets a constant factor of the revenue of Myerson’s optimal auction in the original 
setting. Dhangwatnotai et al. (2010) and Azar et al. (2013) also design approximately optimal prior-independent mechanisms 
in more general single-dimensional settings.

In the realm of posted-price mechanisms, Chawla et al. (2010) provided a generic reduction from designing multi-
dimensional mechanisms in certain settings (formalized in Section 3) to designing OPMs in a related single-dimensional 
setting. They also identified SPMs as being interesting in their own right as simpler mechanisms in single-dimensional set-
tings, and designed SPMs and OPMs in numerous settings. Yan (2011) designed a tight (1 − 1/e)-approximate SPM in all 
matroid settings. Kleinberg and Weinberg designed 1/(4p − 2)-approximate OPMs in all settings that can be written as the 
intersection of p matroids. In comparison to these works, our results, in settings where they apply, match the asymptotic 
guarantees of prior work while only requiring a single sample from each distribution. However, our results only apply when 
the distributions are i.i.d. and regular or asymmetric and MHR. It is also still open to extend our single-sample results to 
general matroids and matroid intersections.

3. Preliminaries

Environments and offline selection problems. An environment I = (U , J ) is given by a universe of elements U = {1, . . . , n}
and a collection J ⊂ 2U of feasible subsets of U . An algorithm A for the offline selection problem on I takes as input a vector 
of positive weights v = (v1, . . . , vn) for elements of U and outputs the independent set M A X(v) = argmaxS∈J

∑
i∈S vi with 

the maximum weight. We denote by O P T (v) = ∑
i∈M A X(v) vi the weight of this maximum independent set.

Online selection problems. Given an environment I = (U , J ), an algorithm A for the online selection problem takes as online
input a vector of values v = (v1, . . . , vn) in some order (vi1 , . . . , vin ) (this order will be specified below). The algorithm 
must maintain a set A of accepted elements, and element i j ∈ U must be either accepted when its value vi j is revealed, or 
rejected forever before moving on to the next item i j+1. At all times, the set A of accepted items must be an independent 
set (that is, A ∈ J ). For convenience of notation, we define A∗(v) = A(vi1 , . . . , vin ) to be the final set of items accepted by 
A, and note that A∗(v) depends on the order in which the items vi1, . . . , vin are revealed.

Prophet inequalities. Given an environment I with universe set U = {1, . . . , n}, let D = D1 × ... × Dn be a product dis-
tribution over Rn≥0.7 Let v = (v1, . . . , vn) be drawn from D. We say that an algorithm A for the online selection problem 
induces a prophet inequality with competitive ratio α for environment I if

Ev←D[
∑

i∈A∗(v)

vi] ≥ α ·Ev←D[O P T (v)]

where the expectations are taken with respect to the random choice of v and the random coin tosses of A. The 
above inequality holds regardless of the order in which the elements vi1 , . . . , vin are revealed. We remark that this is a 
stronger property than that guaranteed by the prophet inequalities in previous papers (Kleinberg and Weinberg, 2012), 
where the adversary had to choose which element i j to reveal at time j using only knowledge of the items and values 
(i1, vi1 ), . . . , (i j−1, vi j−1 ) revealed up to time j − 1.

Limited-information prophet inequalities. In order to guarantee a prophet inequality with a constant competitive ratio, the 
online algorithm A must have some information about the distributions D1, . . . , Dn from which the values are drawn. We 
say that A is a single-sample prophet inequality if it has access only to a single sample s1 = (s1, . . . , sn), drawn from the 
joint distribution D. When A is single-sample, its expected reward Ev,s[∑i∈A∗(s;v) vi] is computed over the randomness in 
the vector of values v , the random sample s and the random coin tosses of the algorithm.

Our constraints. We can give different feasibility constraints by placing different structure on J . Some readers may choose 
not to parse definitions for some of the more advanced matroid classes below. It is not necessary to understand the proofs 
of our results, only to which domains they apply. We are not advocating that advanced matroid classes correspond to 
reasonable auction design settings, but as our results extend to these settings for free, we wish to at least state them 
(with the exception of max-flow–min-cut matroids, for which a formal definition would require excessive matroid-specific 
language that is likely outside the interest of most readers).

7 We remark that the assumption that the rewards V 1, . . . , Vn are independent is somewhat necessary if we want a constant competitive ratio. Hill and 
Kertz (1983) show that if we allow arbitrary correlation between the rewards, then the gambler cannot obtain more than a 1

n fraction of the gambler’s 
expected reward.
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• Matroids. J is a matroid if and only if J is downwards-closed8, contains ∅, and satisfies the augmentation property: 
for all S, S ′ ∈J with |S| > |S ′|, there exists some x ∈ S − S ′ such that S ′ ∪ {x} ∈J .

• Uniform matroids of rank k. A set S ⊂ U is in J if and only if |S| ≤ k.
• Partition matroids. Let B1, . . . , B� be disjoint subsets of U such that U = B1 ∪ ... ∪ B� . Associate a positive integer 

capacity ci with each block Bi . A set S ⊂ U is in J if and only if |S ∩ Bi | ≤ ci for every i ∈ {1, . . . , �}.
• Graphic matroids. Let G = (V , E) be a graph with vertex set V and edge set E . The universe U of the set system is 

given by the set of edges E . A subset S ⊂ E is in J if and only if E induces no cycles in the graph G . In other words, a 
subset of edges is feasible if and only if it is a forest.

• Transversal matroids. Let G = (L ∪ R, E) be a bipartite graph, with left-vertex set L and right-vertex set R . The universe 
U of the set system is L, and a subset S ⊂ L is in J if and only if there is a matching in the graph G that matches 
every vertex of S to some vertex in R .

• Bipartite matchings. Let G = (L ∪ R, E) be a bipartite graph and let U = E . A set S ⊂ E is independent if and only if it 
induces a matching in G . The bipartite matching has degree d if at most d edges are incident to any given vertex.

• Laminar matroids. Let F ∈ 2U be a laminar family of subsets of U . F is a laminar family iff for all A, B ∈ F , we have 
A ⊆ B , B ⊆ A, or A ∩ B = ∅. Associate also, for every set A ∈ F , a positive integer capacity c A . A set S ∈ J if and only 
if |S ∩ A| ≤ c A for all A ∈F .

• Co-graphic matroids. Let G = (V , E) be a graph with vertex set V and edge set E . The universe U of the set system is 
given by the set of edges E . A subset S ⊆ E is in J if and only if E − S contains a spanning forest.9

• Regular matroids. A matroid is F-representable if its universe U can be interpreted as elements in a vector space over 
F, and a subset S of elements is in J if and only if the vectors in S are linearly independent. A matroid is regular if it 
is F-representable for all fields F.

Secretary problems. The secretary problem for an environment (U , J ) (Babaioff et al., 2007b) is an online selection problem 
where the item values v1, . . . , vn can be adversarially chosen, and they are revealed to the online algorithm in a random 
order. This is incomparable in terms of hardness with the prophet inequality setting described above, where the values are 
random variables, and they are presented in an adversarial order. However, our reduction in Section 5 shows that designing 
certain kinds of solutions for the secretary problem is strictly harder than designing prophet inequalities for the same 
setting.

3.1. Mechanism design preliminaries

Mechanisms. An instance of the Bayesian Single-Dimensional Mechanism Design problem (BSMD) is specified by a set 
system (U , J ) and a product distribution D =D1 × ... ×Dn , where n = |U |. Each element of U represents a buyer, interested 
in obtaining a service. The collection J ⊂ 2U represents constraints on which buyers can receive service simultaneously. 
Each buyer i’s value for receiving service is a random variable vi drawn from the distribution Di . A mechanism is said to 
be dominant strategy truthful if it is in each bidder’s interest to report truthfully their value for each item, no matter what 
values are reported by the other bidders.

Formally, a mechanism is a pair of vector-valued functions (x, p) where, given a vector of bids b = (b1, . . . , bn), xi(b) is 
player i’s probability of receiving service and pi(b) is player i’s expected payment. If bidder i’s true preferences are given 
by vi , then her expected utility when the profile of reported bids is b is U (vi, bi, b−i) = xi(b) · vi − pi(b). A mechanism 
is dominant strategy truthful if for all vi, bi, b−i , we have U (vi, vi, b−i) ≥ U (vi, bi, b−i). We also require mechanisms to be 
individually rational. That is, U (vi, vi, b−i) ≥ 0 for all vi, b−i .

Allocation rules determine prices. (Myerson, 1981; Archer and Tardos, 2001) If M = (x, p) is a single-dimensional mech-
anism, then M is truthful if and only if xi(bi, b−i) is a monotonically increasing function of bi (regardless of the vector of 
other bids b−i ) and the price function satisfies

pi(bi) = bi xi(bi) −
bi∫

0

xi(z)dz

where the dependence on b−i has been omitted. Thus, a monotonic allocation rule immediately specifies a truthful mecha-
nism for single-dimensional settings.

Monotone hazard rate. The hazard rate function h(v) of a distribution with cumulative distribution function F (v) and 
probability density function f (v) is defined as h(v) = f (v)

1−F (v)
. The distribution has a monotone hazard rate (MHR) if h(v) is 

increasing in v .

8 J is downward-closed if for any S ∈ J and any T ⊂ S , we have T ∈ J .
9 Co-graphic matroids are duals to graphic matroids, but it is not necessary for this work to understand matroid duals.
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Welfare. For a given instance of BSMD, the optimum welfare is E[maxS∈J {∑i∈S vi}]. We refer to this as optW . We also 
refer to the expected welfare of a mechanism as the expected sum of values for allocated bidders. We say that a mechanism 
gets a welfare competitive ratio of α if its expected welfare exceeds α · optW for all D. We may also discuss a mechanism’s 
welfare competitive ratio for a subclass of distributions, such as i.i.d. or regular.

Virtual valuations and revenue. The virtual value of a bidder with value v sampled from a distribution with CDF F and 
PDF f is usually denoted by φ(v), and is equal to v − 1−F (v)

f (v)
. The distribution is called regular if φ(v) is monotonically 

increasing in v . It is immediate that all MHR distributions are regular. Myerson’s seminal result (Myerson, 1981) shows 
that in all single dimensional settings, the expected revenue of a truthful mechanism is exactly its expected virtual welfare. 
That is Ev [∑n

i=1 pi(v)] = Ev [∑i xi(v)φi(vi)]. Therefore, the optimum revenue is E[maxS∈J {∑i∈S φi(vi)}]. We refer to this 
as optR . We say that a mechanism gets a revenue competitive ratio of α if its expected revenue exceeds α · optR for all D.

Posted price mechanisms. A single-dimensional sequential posted price mechanism (SPM) serves bidders one at a time, of-
fering each a price upon arrival that depends only on the previously observed bids and the underlying distributions. The 
mechanism maintains a set S of bidders who have been assigned service, initialized to be ∅, and adds each bidder to S
iff their reported bid exceeds the price offered. An order-oblivious posted price mechanism (OPM) is a sequential posted price 
mechanism that maintains its approximation guarantee when the order is chosen by an adversary instead of the mecha-
nism.10

Bayesian multi-parameter unit-demand mechanism design (BMUMD). In a Bayesian multidimensional mechanism design 
problem, there are n buyers interested in m items for sale. Each buyer i has a value vij for receiving item j. Let U = [n] ×[m], 
with the element (i, j) denoting the event that bidder i receives item j. Further denote by J the subsets of U corresponding 
to feasible allocations. That is, a set S ∈ J iff it is feasible to simultaneously allocate item j to bidder i for all (i, j) ∈ S . 
A setting is said to be unit-demand if for all S ∈ J , (i, j) ∈ S ⇒ (i, j′) /∈ S for all j �= j′ (i.e. it is infeasible to allocate 
any bidder more than one item). As in Chawla et al. (2010), we also assume that each vij is sampled independently from 
a known distribution Di j . As in the single dimensional setting, we seek to devise a truthful mechanism whose expected 
revenue is (approximately) optimal with respect to the maximum over all truthful mechanisms.

Mechanisms with reserves. The idea of combining simple, welfare-optimizing mechanisms with revenue-optimizing reserve 
prices originated in Hartline and Roughgarden (2009). In Hartline and Roughgarden (2009), the authors first remove every 
bidder who does not meet their reserve, and then run the welfare maximizing mechanism. This process was later dubbed 
an “eager” combination of mechanisms with reserves. Dhangwatnotai et al. (2010) introduce a “lazy” combination of mech-
anisms with reserves that first runs the mechanism, and then removes all bidders who do not meet their reserve. In this 
work, we concern ourselves primarily with lazy reserves. When we refer to monopoly reserves, we mean setting the reserve 
price φ−1

i (0) for each bidder i. When we refer to sample reserves, we mean setting a random reserve price ri ←Di for bidder 
i, that is drawn from the same distribution as Di .

A reduction from OPMs to multi-dimensional mechanism design. Chawla et al. (2010) show how to reduce designing 
(approximately) optimal multi-dimensional mechanisms to (approximately) solving a related single-dimensional problem in 
a specific way. Given an instance I of a multi-dimensional mechanism design problem with n items and m buyers, they 
construct an analogous single-dimensional instance Icopies with nm buyers. That is, each buyer i in the original setting gets 
split into m buyers in Icopies. The (i, j)th buyer in Icopies only values the (i, j)th good, and her valuation vij is drawn from 
the same distribution Di j as in the original setting. We use the following result from Chawla et al. (2010):

Theorem 1. (Chawla et al., 2010) Let I be an instance of the BMUMD, and let Icopies be its analogous single-dimensional environment. 
If there exists an O P M for Icopies that achieves an α-approximation to the optimal revenue, then there exists a truthful mechanism 
for I that achieves an α-approximation to the optimal revenue of any deterministic DSIC mechanism, and an α/4-approximation to 
the optimal randomized mechanism.11

4. Mechanism design with limited information

4.1. From prophet inequalities to mechanisms

Consider a limited-information prophet inequality for any setting J with a competitive ratio of α. All reasonable prophet 
inequalities (certainly every prophet inequality referenced in this work, and all those that the authors are aware of) are 
monotonic in v , meaning that the higher a value vi is (fixing all other v j), the higher the probability i is selected. All 
such prophet inequalities therefore induce an allocation rule x(·), and this allocation rule is monotonic. When each value 

10 We remark that our definition matches that of Kleinberg and Weinberg (2012), which extends the one given in Chawla et al. (2010).
11 The extension to randomized mechanisms holds even when compared to the optimal Bayesian IC mechanism, and is due to Chawla et al. (2015) (who 

proved a bound of α/5). The improvement to α/4 is due to Cai et al. (2016). A mechanism is Bayesian IC (BIC) if it is in every bidder’s best interest to tell 
the truth assuming that all other bidders’ reports are drawn from D−i .
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corresponds to a different bidder (single-dimensional setting), this monotonic allocation rule implies a pricing rule p(·)
which makes the mechanism (x, p) truthful. This implies that every monotone prophet inequality immediately implies a 
truthful online mechanism whose expected welfare is at least αoptW . Furthermore, these mechanisms are all posted-price 
mechanisms, because they accept i iff vi exceeds some threshold Ti .

So the challenge is figuring out how to get a guarantee on the revenue obtained by such mechanisms. Chawla, Hartline, 
Malec, and Sivan provide a framework with which to do this by considering the bidder’s virtual values instead of val-
ues (Chawla et al., 2010). If we run a prophet inequality with competitive ratio α on the distributions of virtual values, we 
select a set of bidders whose virtual values in expectation are at least an α fraction of the optimal expected virtual welfare. 
Therefore, by Myerson’s Theorem (Myerson, 1981), such an allocation rule combined with appropriate payments obtains at 
least an α fraction of the optimal expected revenue.

One issue with this approach is that even getting one sample from a bidder’s virtual value distribution (or even knowing 
the virtual values of the actual bidders) requires extensive knowledge of the distributions. So single-sample prophet in-
equalities do not immediately imply prior independent mechanisms through this framework. Instead, we take an approach 
more similar to Hartline and Roughgarden (2009), who show that welfare-maximizing auctions combined with appropriately 
chosen reserves are also revenue-maximizing in certain settings.

4.2. From welfare to revenue: the i.i.d. case

Comparison based mechanisms. Our reduction from welfare to revenue when distributions are i.i.d. requires the mecha-
nism M to be comparison-based. We define below what it means for a mechanism to be comparison based when it uses 
samples, and will emphasize in all of our prophet inequalities whether or not they are comparison-based.

Definition 1. Let M(v; s1, . . . , sd) be a mechanism for single-dimensional settings which depends on a vector of bids v =
(v1, . . . , vn) ← D and also on a collection of samples s1 = (s1

1, . . . , s
1
n), . . . , sd = (sd

1, . . . , s
d
n), each drawn from D. Let x be 

the allocation rule associated with M. We say that M is comparison-based if the allocation rule x(v1, . . . , vn, s1
1, . . . , s

d
n) only 

depends on the relative order of its arguments, and not on their respective values.

Theorem 2. Let J be any downwards-closed set system, and let each Di be identical and regular. Let also M be any single-dimensional 
comparison-based mechanism whose expected welfare competitive ratio is α. Then the mechanism that combines (either eagerly or 
lazily) M with monopoly reserves has expected revenue competitive ratio α.

To prove Theorem 2 for the lazy combination with Myerson reserves, we need a Lemma regarding properties of 
comparison-based algorithms. Lemma 1 below says that in order for a comparison-based mechanism to achieve good wel-
fare on all product distributions, it must accept a good fraction of the highest bidders in expectation (where “good fraction” 
means relative to the best possible).

Lemma 1. Let M be any comparison-based mechanism for downwards-closed feasibility constraints J whose expected welfare com-
petitive ratio is α. Fix an ordering of bidders x1, . . . , xn and relative ordering of values v1 > . . . > vn (but not the values themselves). 
Let also J (i) = maxS∈J {|S ∩ {1, . . . , i}|}, and q j denote the probability that M selects x j . Then for all i, we have:∑

j≤i

q j ≥ α J (i)

Proof. Observe first that q j is well-defined: As M is a comparison-based mechanism, once we fix the bidders and their 
relative ordering of values, the behavior of the mechanism is also fixed, independent of what the actual values are. So 
assume for contradiction that the Lemma is false, and let i be an index for which 

∑
j≤i q j < α J (i). Then consider the 

distribution for which D j is a point mass at 1 (and therefore v j = 1 with probability 1) for all j ≤ i and Dk is a point 
mass as 0 (and therefore vk = 0 with probability 1) for all k > i. Then M obtains expected welfare 

∑
j≤i q j < α J (i), and the 

optimal mechanism obtains expected welfare J (i). So M does not have expected welfare competitive ratio α.

Proof of Theorem 2. We first observe that whenever all Di are regular and i.i.d., the relative ordering by values is exactly 
the same as the relative ordering by virtual values. So if values are sorted in decreasing order as v1, . . . , vn , the following are 
also sorted in decreasing order: max{φ(v1), 0}, . . . , max{φ(vn), 0}. As everything in the latter list is positive, immediately 
because M obtains a welfare competitive ratio of α, we get that the expected virtual surplus of M with eager monopoly 
reserves (replace all bidders who fall below their monopoly reserve with a dummy bidder of virtual value 0) is at least 
E[α maxS∈J {∑i∈S max{φ(vi), 0}], exactly an α-fraction of the optimal expected virtual surplus. By Myerson’s Lemma, this 
implies that such a mechanism also obtains an expected revenue competitive ratio of α.

For lazy reserves, we need to be more careful because of negative virtual values. The problem is that no comparison-
based mechanism can guarantee a non-trivial welfare competitive ratio if values might be negative (because it can’t 
distinguish positive from negative values). So we cannot simply invoke the algorithm’s competitive ratio while some vir-
tual values are negative. Fortunately, Lemma 1 captures exactly what is necessary to show that removing negative virtual 
values ex-post still works.
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Let m denote the largest index such that φ(vm) ≥ 0, and q j denote the probability that M selects bidder x j , and Q i =∑i
j=1 q j . Then we can write the expected virtual welfare of φ(M) with lazy removal of negative virtual values as:

m∑
j=1

q j · φ(v j) = Q m · φ(vm) +
m−1∑
i=1

Q i · (φ(vi) − φ(vi+1))

We can also let p j = 1 if Myerson’s auction selects x j and 0 otherwise, and Pi = ∑i
j=1 p j . Then the virtual surplus from 

Myerson’s auction is just:

Pm · φ(vm) +
m−1∑
i=1

Pi · (φ(vi) − φ(vi+1))

Again let J (i) denote the maximum size of a feasible set in J using only bidders in {x1, . . . , xi}. Then we clearly have 
Pi ≤ J (i). By Lemma 1, we also have Q i ≥ α · J (i). Putting this together with the above work we get the following two 
inequalities:

Q m · φ(vm) +
m−1∑
i=1

Q i · (φ(vi) − φ(vi+1)) ≥ α · J (m) · φ(vm) +
m−1∑
i=1

α · J (i) · (φ(vi) − φ(vi+1))

Pm · φ(vm) +
m−1∑
i=1

Pi · (φ(vi) − φ(vi+1)) ≤ J (m) · φ(vm) +
m−1∑
i=1

J (i) · (φ(vi) − φ(vi+1))

which exactly says that on every profile, running M with lazy removal of negative virtual values gets an α fraction of the 
optimal virtual surplus. Taking an expectation over all profiles, we see that the expected revenue of M with lazy monopoly 
reserves has revenue competitive ratio α.

Of course, computing the monopoly reserves requires knowledge of the distributions. These reserves can be replaced by 
samples, using a result from Azar et al. (2013), Dhangwatnotai et al. (2010).

Lemma 2. (Azar et al., 2013; Dhangwatnotai et al., 2010) Let J be any downwards-closed set system and let each Di be regular (not 
necessarily identical). Let M be a mechanism such that the lazy combination of M with monopoly reserves has an expected revenue 
competitive ratio of α. Then the lazy combination of M with single sample reserves obtains an expected revenue competitive ratio of α2 . 
Furthermore, if M obtains expected welfare competitive ratio of β , then the lazy combination of M with single sample reserves obtains 
expected welfare competitive ratio of β2 .

We highlight that we could also replace the single sample with the median of Di , or more generally with the pth 
quantile of Di and get a competitive ratio of α · min{p, 1 − p}. Any error in approximating the median (or quantile) is 
directly absorbed into the competitive ratio as well.

As a corollary of Theorem 2 and Lemma 2, we conclude that any mechanism which guarantees an constant-fraction 
approximation to welfare can be combined with lazy sample reserves to guarantee a constant-fraction approximation to 
revenue when the valuations are drawn from i.i.d. regular distributions.

Corollary 1. Let M be a comparison-based, single-dimensional mechanism that guarantees an α approximation to welfare for all 
product distributions. Then when D is i.i.d. and regular, M combined with lazy sample reserves guarantees an α

2 approximation to 
revenue and an α2 approximation to welfare.

The proof of Corollary 1 follows by first plugging M into Theorem 2. This guarantees that M combined with lazy 
monopoly reserves yields a revenue competitive ratio of α. Now, the hypotheses of Lemma 2 are satisfied and we can 
further conclude that M combined with lazy sample reserves yields the stated competitive ratios.

4.3. From welfare to revenue: the MHR case

Here, we can fortunately just use prior work directly. It now known that, when bidders’ distributions have a monotone 
hazard rate, a single-dimensional mechanism that approximates welfare combined with lazy monopoly reserves gives a good 
approximation to revenue (Dhangwatnotai et al., 2010).

Lemma 3. (Dhangwatnotai et al., 2010) Let J be any downwards-closed set system, and let each Di be MHR. Let also M be any 
single-dimensional universally truthful mechanism12 whose expected welfare competitive ratio is α. Then the mechanism M′ that 
combines (lazily) M with monopoly reserves has a revenue competitive ratio of αe .

12 A mechanism is universally truthful if it is a distribution over deterministic truthful mechanisms. All posted-price mechanisms are universally truthful.
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Combining this with Lemma 2, we obtain the following corollary.

Corollary 2. If M guarantees an α approximation to welfare and distributions are M H R then M combined with lazy sample reserves 
guarantees an α

2e approximation to revenue and an α2 approximation to welfare.

5. Single-sample prophet inequalities from existing secretary algorithms

In this Section, we provide a formal black-box method to convert specific kinds of solutions to the secretary problem to 
single-sample prophet inequalities. More formally, our reduction will work for order-oblivious algorithms, which we define as 
follows.

Definition 2. We say that an algorithm S for the secretary problem (together with its corresponding analysis) is order-
oblivious if, on a randomly ordered input vector (vi1 , . . . , vin ):

1. (algorithm) S sets a (possibly random) number k, observes without accepting the first k values S = {vi1 , . . . , vik }, and 
uses information from S to choose elements from V = {vik+1 , . . . , vin }.

2. (analysis) S maintains its competitive ratio even if the elements from V are revealed in any (possibly adversarial) 
order. In other words, the analysis does not fully exploit the randomness in the arrival of elements, it just requires that 
the elements from S arrive before the elements of V , and that the elements of S are the first k items in a random 
permutation of values.

We now show how to construct a prophet inequality P given an order-oblivious algorithm S for the secretary problem. 
Recall that the algorithm P takes as offline input a vector s = (s1, . . . , sn) of samples drawn from a distribution D, and takes 
as online input a vector v also drawn from D, and whose individual components are provided in an adversarial order.

PS (s1, . . . , sn; vi1 , . . . , vin )

Offline Stage

1. Let k be the number of elements that S observes before it starts accepting elements (i.e., k = |S|).
2. Let s j1 , . . . , s jn be a random permutation of s = (s1, . . . , sn). Pass s j1 , . . . , s jk as the first k inputs to S .

Online Stage

3. For each index i ∈ {i1, . . . , in}:
a. If i ∈ { j1, . . . , jk}, then index i has already been processed as a “sample”. Ignore it and continue.
b. If i ∈ { j j+1, . . . , jn}, pass the value vi to algorithm S , and accept i if and only if S accepts i.

Theorem 3. If S is an order-oblivious algorithm for the secretary problem with competitive ratio α, then PS is a single-sample prophet 
inequality with competitive ratio α.

Proof. The algorithm PS first permutes the vector s of samples into a random permutation s j1 , . . . , s jn and takes the first 
k elements s j1 , . . . , s jk of this permutation and passes them as inputs to the secretary algorithm S . After that, the secretary 
algorithm S is passed all the inputs vi where i /∈ { j1, . . . , jk} in an arbitrary order. Since S is order-oblivious, the set it 
selects has a weight of at least α · O P T (v), where O P T (v) = maxA∈J

∑
i∈A vi . So if we let f (v) denote the probability 

density function associated with the joint distribution D, we have that our algorithm PS obtains expected reward of at 
least ∫

v

f (v)α · O P T (v)dv,

because whether or not element i is a sample is independent of si, vi . So the distribution of values passed into the secretary 
algorithm is indeed consistent with f (·). The prophet’s expected reward is exactly 

∫
v f (v) · O P T (v)dv , which immediately 

says that PS obtains competitive ratio α.

Note that our single-sample algorithm PS does not use any sampled values for elements in the set V . This is important, 
as we can then reuse the samples for items in V for other purposes, such as setting reserve prices.
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5.1. Existing order-oblivious secretary algorithms

In this Section, we sketch existing secretary algorithms and briefly argue why they are order-oblivious. We conclude 
the Section with a formal statement of the prophet inequalities implied by these results, as well as the prior-independent 
mechanisms.

General matroids in the random assignment model (Gharan and Vondrák, 2011). If the rank of the matroid given by J is 
less than 12, this algorithm runs the rank-1 matroid algorithm. Otherwise it observes a set the first half of its input and 
sets a threshold T equal to the � r

4 � + 1st largest value it observes, where r is the rank of the matroid. For the second half 
of the input, it accepts all items above the threshold T , as long as accepting them does not violate the matroid constraints. 
In their proof, the authors directly lower bound the probability that a certain weight is selected by the algorithm for the 
worst-case ordering of the second half, so both the algorithm and analysis are order-oblivious.

Transversal matroids (Dimitrov and Plaxton, 2012). The algorithm begins by assigning an ranking to the set R of right 
vertices. It then chooses a set S of “samples” consisting of the first k = Binom(n, 12 ) values seen. All the values in S are 
discarded, but they are used to construct an auxiliary matching M0(S), where each item in S is matched to the highest 
ranking right-node that is still available. The algorithm then constructs the “real matching” M1 using elements from V =
L − S . As each of the remaining left-vertices � ∈ L − S arrives, � is matched with the highest ranked right vertex r that is 
not matched in M0(S), as long as r is not already matched in M1. Dimitrov and Plaxton show that this is a 1

16 competitive 
algorithm, and that this competitive ratio holds regardless of the order in which elements from V are revealed. Thus, the 
algorithm is order-oblivious.

Rank-1 matroids. Many of the remaining algorithms involve a subroutine for 1-uniform matroids. Dynkin’s algorithm is not 
order-oblivious, so we first give a very simple 1

4 -competitive algorithm for the classical secretary problem that is.

SRank−1(vi1 , . . . , vin )

1 Let k = Binomial(n, 12 ).
2 Let T = max{vi1 , . . . , vik }.
3 Accept the first element in vik+1 , . . . , vin satisfying vi > T .

With probability 1/4, the highest element is somewhere in vik+1 , . . . , vin and the second-highest is a “sample” in 
vi1 , . . . , vik . In this case, the highest element is accepted no matter what order the elements in V are revealed. Thus 
SRank−1 is order-oblivious.

Graphic matroids (Korula and Pál, 2009), co-graphic matroids (Soto, 2011), laminar matroids (Ma et al., 2016), regular and 
max-flow–min-cut matroids (Dinitz and Kortsarz, 2014), general matroids (Lachish, 2014; Feldman et al., 2015). At a high 
level, all of these algorithms do the following: process a constant fraction of the input. Then, possibly randomly, partition the 
remaining elements (without seeing them) into disjoint sets U1, . . . and put restricted feasibility constraints Ji on Ui such 
that for any sets Si ∈ Ji we have ∪i Si ∈ J . For some algorithms, the decomposition is chosen ahead of time without even 
needing to see the samples, and for some the decomposition depends on the ignored elements. In some, no decomposition 
is necessary. In each case, each Ji is simple enough that some greedy-like algorithm (accept every element that is in the 
max-weight basis of elements revealed so far) gets a constant factor approximation, no matter the order. The analysis looks 
similar to that of SRank−1, but is obviously more technical. In some cases, the Ji are actually rank-1 matroids, in which case 
SRank−1 is exactly the greedy-like algorithm used.

Corollary 3. The following single-sample prophet inequalities exist:

• Bipartite matchings: a 1
256 -approximation based on Feldman et al. (2018).

• Graphic matroids: a 1
8 -approximation based on Korula and Pál (2009).

• Transversal matroids: a 1
16 -approximation based on Dimitrov and Plaxton (2012).

• Co-graphic matroids: a 1
12 -approximation based on Soto (2011).

• Laminar matroids: a 1
9.6 -approximation based on Ma et al. (2016).

• Regular and max-flow–min-cut matroids: a 1
36 -approximation based on Dinitz and Kortsarz (2014).

• General matroids: a 1
O (log log k)

-approximation based on Lachish (2014), Feldman et al. (2015). If all weights are i.i.d., then the ratio 

improves to 1− 1
e

40 (Gharan and Vondrák, 2011).

Finally, We can make use of Corollary 3 above combined with Corollaries 1 and 2 we get the following. The mechanisms 
are obtained by running the prophet inequalities guaranteed by Corollary 3 above, and then applying a lazy sample reserve. 
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Remember that all of the above prophet inequalities only use samples from bidders who are unallocated, so we can use the 
remaining samples from D to act as the sample reserves.

Corollary 4. For each of the settings below, when all bidders’ values are MHR, there exists a single-sample OPM with the following 
guarantees:

• Bipartite matchings: a revenue competitive ratio of 1
256e and welfare competitive ratio of 1

256 .

• Graphic matroids: a revenue competitive ratio of 1
16e and welfare competitive ratio of 1

16 .

• Transversal matroids: a revenue competitive ratio of 1
32e and welfare competitive ratio of 1

32 .

• Co-graphic matroids: a revenue competitive ratio of 1
24e and welfare competitive ratio of 1

24 .

• Laminar matroids: a revenue competitive ratio of 1
19.2e and welfare competitive ratio of 1

19.2 .

• Regular and max-flow–min-cut matroids: a revenue competitive ratio of 1
72e and welfare competitive ratio of 1

72 .

• General matroids: a revenue competitive ratio and welfare competitive ratio of 1
O (log log k)

.

If instead bidders’ values are i.i.d. and regular, there exists a single-sample OPM for all matroids with revenue competitive ratio 1−1/e
80e

and welfare competitive ratio 1−1/e
80 .

Note that by Theorem 1, this immediately implies mechanisms for BMUMD in the same settings with the same guar-
antees against the optimal deterministic DSIC mechanism, and with all guarantees degraded by a factor of four against the 
optimal randomized BIC mechanism.

6. Single-sample prophet inequalities for k-uniform matroids

In this Section we provide an asymptotically optimal single-sample prophet inequality for k-uniform matroids. Note that 
Kleinberg’s algorithm (Kleinberg, 2005) for k-uniform matroids is not order-oblivious (and seems quite far from modifica-
tions that would make it so), so we cannot simply plug into the reduction from Section 5. Note again that Alaei’s prophet 
inequality already obtains the optimal asymptotic competitive ratio (Alaei, 2011), so the contribution of this Section is the 
algorithm’s simplicity and need for only a single sample from D.

6.1. The rehearsal algorithm

We now describe our algorithm, which we call the Rehearsal Algorithm. The algorithm needs to fill k slots, and each slot 
i is associated with a threshold Ti (which is defined below). Each slot i can only be filled by a value that is above the 
threshold Ti , and can only be filled once. Each observed value can only fill a single slot. When we see an element that 
can fill at least one available slot, we fill the slot with the highest threshold. When we see an element that cannot fill any 
available slots, we reject it.

Intuitively, one might try to set the ith threshold Ti to the ith largest sample. This algorithm doesn’t quite work, but 
a small modification suffices: instead, we set the first k − 2

√
k thresholds equal to the top k − 2

√
k samples, then set 

the remaining 2
√

k thresholds equal to the k − 2
√

kth highest sample (essentially repeating this sample 2
√

k times as a 
threshold). This is necessary in order for the probability of selecting the highest-value items to be sufficiently close to 1. 
(See Lemmas 7 and 8.)

We describe the algorithm formally below.

Rehearsal(s1, . . . , sn; vi1 , . . . , vin )

1. Offline Phase

1.a Let s(1) > ... > s(n) be the observed samples in decreasing order.
1.b For j ∈ {1, . . . , k − 2

√
k} set T j = s( j) .

1.c For k − 2
√

k < j ≤ k, set T j = Tk−2
√

k = s(k−2
√

k) .

2. Online Phase Initialize S = {1, . . . , k} as the set of available slots. For j ∈ {1, . . . , n}:

2.a Let vi j be the value of the jth revealed item. Let α be an index such that Tα−1 > vi j > Tα .
2.b Let S ∩ {α, α + 1, . . . , k} be the set of slots that have not been filled, and that could be filled by vi j . Let m =

min{S ∩ {α, . . . , k}}. This is the first slot that could be occupied by vi j .
2.c If S ∩ {α, . . . , k} is empty, reject vi j

2.d If S ∩ {α, . . . , k} is not empty, accept vi j and update S ← S − m.
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Theorem 4. The rehearsal algorithm obtains a competitive ratio of 1 − O ( 1√
k
) for k-uniform matroids.

The proof of Theorem 4 is more involved than those of the previous Sections, so we split the analysis into parts below. 
In Section 6.2, we reduce the analysis of the rehearsal algorithm to a question about mildly correlated random walks. 
Section 6.3 is purely an analysis of this random walk, showing it has the desired properties. Before getting into the proof, 
we state the Theorems implications for mechanism design:

Corollary 5. Let J be a k-uniform matroid. Then there exists a two-sample OPM guaranteeing a revenue competitive ratio of 1−O (1/
√

k)
2e

and welfare competitive ratio of 1−O (1/
√

k)
2 when all Di are MHR. If all Di are i.i.d. and regular, then the OPM guarantees a revenue 

and welfare competitive ratio of 1−O (1/
√

k)
2 .

6.2. Part I: the worst adversarial ordering and connection to random walks

Here, we provide the first step in analyzing the rehearsal algorithm, reducing the analysis to answering a question about 
correlated random walks. We first state a convenient property of the rehearsal algorithm. (In fact, it holds no matter how 
the thresholds T1, . . . , Tk are set.)

Lemma 4. For any vector of values v = (v1, v2, . . . , vn), and any thresholds T1, . . . , Tk, the worst-case order for the rehearsal algo-
rithm is when the values vi are revealed in increasing order.

Proof. Consider any fixed v1, . . . , vn and T1, . . . , Tn and assume w.l.o.g. that v1 < . . . < vn . Also, say there exist some j, j′
such that v j is revealed right before v j′ and v j > v ′

j . Clearly, such j, j′ exist whenever the values are not revealed in 
increasing order. We now want to consider the behavior of the rehearsal algorithm if we swap the order in which v j and 
v j′ are revealed.

First, observe that whether vi is accepted or not depends only on what slots are available when vi is revealed and not
on what elements already filled the slots that are not available. So let S denote the set of available slots right before v j is 
revealed. Let S j denote the subset of S of slots whose threshold is below v j , and S j′ the subset whose threshold is below 
v j′ . Since v j′ < v j , we have that S j′ ⊆ S j . Now we consider a few cases:

First, maybe S j = ∅. Then no matter what order v j and v j′ are revealed in, the rehearsal algorithm will reject them both 
and the same set of thresholds will be available to the remaining elements. So the set of accepted elements will be exactly 
the same regardless of the order of v j and v j′ .

Second, maybe S j′ = ∅, S j �= ∅. Then no matter what order v j and v j′ are revealed in, the rehearsal algorithm will reject 
v j′ and accept v j to fill the lowest available slot in S j . So the same set of thresholds will be available to the remaining 
elements and the set of accepted elements will be exactly the same regardless of the order of v j and v j′ .

Third, maybe S j = S j′ and |S j| ≥ 2. Then no matter what order v j and v j′ are revealed, the rehearsal algorithm will 
accept both v j and v j′ and fill the two lowest slots of S j . So the same set of thresholds will be available to the remaining 
elements and the set of accepted elements will be exactly the same regardless of the order of v j and v j′ .

Fourth, maybe |S j | > |S j′ | > 0. Then no matter what order v j and v j′ are revealed, v j will fill the slot of S j with the 
highest threshold value (which is necessarily not in S j′ ), and v j′ will fill the slot in S j′ with the highest threshold value. So 
the same slots will be available to the remaining elements and set of accepted elements will be exactly the same regardless 
of the order of v j and v j′ .

Finally, maybe S j = S j′ and |S j| = 1. Then whichever of v j and v j′ is revealed first will fill the single available slot. The 
second will be rejected. However, the same slots will be available to the remaining elements regardless of their order, so 
the exact same set of remaining elements will be accepted. The only difference is whether v j or v j′ was accepted. This is 
the only case where the set of accepted elements will differ, and it differs exactly by replacing v j with v j′ , which strictly 
increases the value of accepted elements.

So we can start from any ordering of the vi ’s and swapping elements a finite number of times until the vi ’s are sorted 
so that the values are revealed in increasing order. By the above argument, we did not improve the value of accepted 
elements at any swapping step. Therefore, revealing the vi ’s in order of increasing values is indeed the worst-case order for 
the rehearsal algorithm.

Using Lemma 4, we may assume w.l.o.g. that all elements are revealed so that the values are in increasing order. Using 
this, we will now reduce the problem of analyzing the rehearsal algorithm to answering a question about correlated random 
walks. When we run the rehearsal algorithm, the following experiment happens. First, a sample vector s = (s1, . . . , sn) is 
drawn from D and thresholds T1, . . . , Tk are set. Then, values v1, . . . , vn are revealed in increasing order and accepted/re-
jected according to the algorithm. Instead, imagine the following equivalent experiment. First, two samples are taken from 
each Di , yi and y′ . Then, independently for all i, we permute the pair (yi, y′) to determine which element is a “sample” 
i i
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and which one is a “value.” That is, we set vi = yi and si = y′
i with probability 1

2 , or vi = y′
i and si = yi with probabil-

ity 1
2 . We will show that, for any y1, y′

1, . . . , yn, y′
n , the rehearsal algorithm obtains good reward in expectation, where the 

expectation is taken over the coin tosses that determine which of (yi, y′
i) is a “value” and which one is a “sample.”

Fix the list y1, y′
1..., yn, y′

n and let Y j denote the jth highest value of this list. Let p j denote the probability, over the 
randomness of the coin flips, that the prophet selects Y j (i.e. the probability that Y j is one of the k largest “values”). Let’s 
observe a simple upper bound on the expected value the prophet attains with samples Y1, . . . , Y2n:

Observation 1. 
∑2n

j=1 p j · Y j ≤ ∑2k
j=1

1
2 · Y j .

Proof. The prophet chooses element Y j with probability p j . Thus O P T = ∑2n
j=1 p j Y j . Since the prophet cannot select more 

than k items, we must have 
∑2n

j=1 p j ≤ k. Furthermore, each Y j has a 1
2 chance of being a “sample” and thus the prophet 

will never choose it. Thus p j ≤ 1
2 for all j. Since Y1 ≥ ... ≥ Y2n , these constraints imply that 

∑2n
j=1 p j Y j ≤ ∑2k

j=1
1
2 Y j .

Our goal is to show that the gambler can guarantee a reward of (1 − O ( 1√
k
)) · O P T by using the rehearsal algorithm. 

Let q j denote the probability that the rehearsal algorithm selects Y j . By Observation 1, it suffices to show that 
∑2k

j=1 q j Y j ≥
c
2

∑2k
j=1 Y j for c = 1 − O ( 1√

k
). In fact, a sufficient condition for this is that 

∑i
j=1 q j ≥ ci/2 for all i ≤ 2k.13

The rest of this Section is spent proving this claim. We do this by defining a random walk RW associated with the 
performance of the rehearsal algorithm. The random walk starts at 0 and goes up or down depending on whether Y j is a 
“sample” or a “value”. More formally, RW ’s definition is as follows:

Random Walk RW

1 Define RW (0) = 0.
2 For j > 0, given the value RW ( j − 1) of the random walk at time j − 1, define the value RW ( j) of the random 

walk at time j as:
2.a RW ( j) = RW ( j − 1) − 1 if Y j is a “value”.
2.b RW ( j) = RW ( j − 1) + 1 if Y j is a “sample,” and there are at most k − 2

√
k − 2 different i < j that are also 

“samples.”
2.c RW ( j) = RW ( j − 1) + 2

√
k + 1 if Y j is a “sample,” and there are exactly k − 2

√
k − 1 different i < j that are 

also “samples.”
2.d RW ( j) = RW ( j − 1) if Y j is a “sample,” and there are at least k − 2

√
k different i < j that are also “samples.”

To clarify, if Y j is a “value,” the walk moves down by 1 at step j. If Y j is a “sample” and would have set a threshold, 
the walk moves up by 1 at step j. If Y j is a “sample” and would have set the threshold that is repeated 2

√
k + 1 times, 

then the walk moves up by 2
√

k + 1 at step j. If Y j is a “sample” and would not have set a threshold, the walk does not 
move at step j. Now we state some facts that relate the performance of the rehearsal algorithm to facts about this random 
walk. Still assuming that all xi are revealed so that the values are in increasing order, we show how to figure out, just by 
looking at this random walk, which elements are selected by the rehearsal algorithm. We first need a definition and some 
facts. Fig. 1 illustrates these facts, assigning different colors to accepted and rejected values, as well as filled and unfilled 
thresholds.

Definition 3. For any j, H R
j (RW ) is the height of RW to the right of j. Or formally, H R

j (RW ) = maxi≥ j{RW (i) − RW ( j)}. 
Similarly, H L

j (RW ) is the height of RW to the left of j. Formally, H L
j (RW ) = maxi≤ j{RW (i) − RW ( j)}.

If it is clear from context, we will just write H L
j instead of H L

j (RW ). We can now prove two facts about this random 
walk and its relation to the rehearsal algorithm when values are revealed by the adversary in increasing order.

Fact 1. Assuming that the vi are revealed so that the values are in increasing order, for all j, Y j is chosen by the rehearsal 
algorithm if and only if Y j is a “value” and H R

j > 0.

Proof. If H R
j > 0, then there is some i > j with RW (i) > RW ( j). RW increases every time it sees a threshold, and decreases 

every time it sees a value. So that means that there are more thresholds than “values” in the list (Y j+1, . . . , Yi). This 

13 It is easy to see that minimizing ∑ j q j Y j subject to this condition will set q j = c/2 for all j ≤ 2k.
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Fig. 1. An illustration of our random walk. The steps in blue correspond to selected values (since the random walk returns to these values eventually), the 
values in red correspond to rejected values. The samples in black are unfilled thresholds, the samples in green are filled thresholds. The samples in yellow 
are samples that do not determine a threshold. Notice that there’s a threshold that produces a large jump in the random walk. We also highlight a point i, 
together with its corresponding left and right heights. The value is accepted because its right height is greater than zero. The number of values to the left 
that are not accepted is exactly H L

i − H R
i . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

necessarily means that the first “value” revealed that is at least Y j will be selected, because there will be at least one 
available threshold between Yi and Y j . Because we are assuming that the values are revealed in increasing order, Y j is 
exactly the first value revealed that is at least Y j , and is therefore selected.

If RW (i) ≤ RW ( j), then there are at least as many “values” as there are thresholds in the list (Y j+1, . . . , Yi). Because 
the values are revealed in increasing order, this means that the slot using threshold Yi will certainly be filled before Y j is 
revealed. If H R

j = 0, then it is true that RW (i) ≤ RW ( j) for all i > j, which means that all possible slots that Y j could use 
will be filled before Y j is revealed, and therefore Y j will not be selected by the rehearsal algorithm.

Fact 2. For all i, the number of “values” in {Y1, . . . , Yi} that are not selected by the rehearsal algorithm is max{H L
i − H R

i , 0}.

Proof. Let j1, . . . , jh denote the indices of the “values” in (Y1, . . . , Yi) that are not selected by the rehearsal algorithm in 
increasing order. We show that H L

i − H R
i = h by first showing that H L

i − H R
i ≥ h, and then showing that H L

i − H R
i ≤ h.

For any index k in {1, . . . , h}, Y jk is not selected. Thus, Fact 1 tells us that it must be the case that RW (z) ≤ RW ( jk) for 
all z ≥ jk . In particular, this must hold for z = jk+1 − 1. Because Y jk+1 is a “value”, we know that RW ( jk+1) = RW ( jk+1 −
1) −1, and therefore RW ( jk+1) ≤ RW ( jk) −1. Chaining this together for all k in {1, . . . , h}, we get that RW ( jh) ≤ RW ( j1) −
(h − 1). Because j1 is a “value”, RW ( j1) = RW ( j1 − 1) − 1, which means that we get RW ( jh) ≤ RW ( j1 − 1) − h.

Since jh is the index of a “value” that was not selected by the rehearsal algorithm, we know from fact 1 that RW (z) ≤
RW ( jh) for all indices z ≥ jh (which includes all z ≥ i, since jh ∈ {1, . . . , i}). Let m = RW ( jh) − RW (i) and note that 
H L

i ≥ RW ( j1) − RW (i) ≥ h + RW ( jh) − RW (i) = h + m. Furthermore, since RW (z) ≤ RW ( jh) for all z ≥ i, we have H R
i ≤

RW ( jh) − RW (i) = m. We conclude that H L
i − H R

i ≥ h + m − m = h.
Let H = H L

i − H R
i . We will show that H ≤ h, thus concluding the proof. Since H L

i = H R
i + H , there exists an index 

j ∈ {1, . . . , i} such that RW ( j) = RW (i) + H R
i + H . So, for every k in {1, . . . , H}, choose jk to be the largest index in 

{1, . . . , i} such that RW ( jk − 1) ≥ RW (i) + H R
i +k. By this definition, we have RW ( jk) < RW (i) + H R

i +k ≤ RW ( jk − 1), and 
thus the random walk goes down at step jk . This means that Y jk is a “value”. Furthermore, the value Y jk is not selected by 
the rehearsal algorithm because H R

jk
= 0. To see this, note that for any index j between jk and i, we have RW ( j) ≤ RW ( jk)

by the definition of jk (otherwise jk would not be the largest index satisfying RW ( jk − 1) ≥ RW (i) + H R
i +k). Furthermore, 

for every index j ≥ i, we have RW ( j) ≤ RW (i) + H R
i < RW (i) + H R

i + k ≤ RW ( jk − 1) = RW ( jk) + 1. Thus, we have 
RW ( j) ≤ RW ( jk) for every j > jk . By Fact 1 this implies that Y jk is a value that does not get selected by the rehearsal 
algorithm. We showed in this paragraph that there are at least H = H L

i − H R
i such values. In the previous paragraph we 

show that there are at most H such values. Thus, we conclude that the number of values in {1, . . . , i} that are not selected 
by the rehearsal algorithm is exactly H L

i − H R
i .

The expected number of “values” in {Y1, . . . , Yi} is i
2 . By Fact 2, we have that the expected number of values in 

{Y1, . . . , Yi} selected by the rehearsal algorithm is i
2 − E[max{H L

i − H R
i , 0}], where the expectation is taken with respect 

to the coin tosses of the random walk. Thus, to show that 
∑i

j=1 q j ≥ ci
2 for c = 1 − d√

k
(where we have made explicit the 

constant d in O ( 1√
k
)), it suffices to show that

E[max{H L
i − H R

i ,0}] ≤ d · i

2
√

k
.

Our next subsection is dedicated to proving this inequality.
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6.3. Rehearsal algorithm analysis. Part II: bounding the height of the random walk

In light of the previous Section, we have reduced the analysis of the rehearsal algorithm to proving the following Theo-
rem.

Theorem 5. E[max{H L
i − H R

i , 0}] ≤ O ( i√
k
) ∀i ≤ 2k, where the constant implicit in the O (·) notation is the same for all i.

Recall that our random walk is non-traditional in two ways. First, after k − √
2k positive steps, the random walk jumps 

an additional 2
√

k + 1 units. Second, the steps of the random walk are slightly correlated. In each pair yi, y′
i ← Di , exactly 

one induces a non-negative step (by being a “sample”) and the other one must induce a negative step (by being a “value”). 
Thus, the steps in the random walk are correlated. Our proof of Theorem 5 accounts for these obstacles using the following 
steps.

1. We show that for large i we in fact have E[H L
i ] ≤ O (i/

√
k). It is clear that E[H L

i ] ≥ E[max{H L
i − H R

i , 0}], so this is 
enough. We prove this by first observing that if there were no correlation between steps and no jump, then this is a 
well-known fact about the expected height of random walks. Then we show that the jump and correlation can only 
decrease E[H L

i ].
2. The analysis is made difficult by the fact that RW jumps up at a random location. To circumvent this difficulty, we 

will describe a new random walk RW ′ that jumps up at a fixed index instead of after the (k − 2
√

k)th threshold seen. 
For all small i, it will be clear that H L

i (RW ) = H L
i (RW ′), and we will show that H R

i (RW ′) ≤ H R
i (RW ) with very high 

probability. (The probability that H R
i (RW ′) > H R

i (RW ) is inversely exponential in k.) As H R
i (RW ) is clearly at most 

k, this means that for small i, we only have to bound E[max{H L
i (RW ′) − H R

i (RW ′), 0}], which is still challenging but 
much cleaner.

3. We show in RW ′ that for small i and j < i, H R
j = 0 with low probability. We first prove that this is true if there was 

no correlation, and show that correlation can only decrease the probability that H R
j = 0. By Facts 1 and 2, this exactly 

says that E[max{H L
i − H R

i , 0}] is small.

We now proceed to show step 1, that for all i ≥ k/2, E[H L
i ] ≤ O (i/

√
k). First, it is clear that the jump cannot possibly 

increase E[H L
i ], because for all j < i, either the jump does not affect RW ( j) − RW (i), or it decreases RW ( j) − RW (i) by 

2
√

k + 1. So we may ignore the jump as doing so only increases E[H L
i ]. Next, it is clear that if there is no correlation 

between steps to the left of i, then H L
i is just the height of a truly random walk starting at i going back to 0. It is a 

well-known consequence of the reflection principle that the expected height of a random walk on i steps is O (
√

i), see 
e.g. Feller (1968). Because i ≥ k/2, this would exactly say that E[H L

i ] ≤ O (i/
√

k). Now we just have to show that the 
same bound holds even if there are correlated pairs before i. To do this, we show that for any pair of correlated steps, 
decorrelating them only increases E[H L

i ], regardless of any other correlation. We can then apply this argument a finite 
number of times, decorrelating every pair of correlated steps to increase E[H L

i ] to a value that is O (i/
√

k) by our previous 
observation. Therefore, it must be the case that E[H L

i ] ≤ O (i/
√

k).

Lemma 5. Let RW be any random walk of n steps where steps x and y are negatively correlated random variables, each uniformly 
distributed in {±1}. Consider modifying RW by replacing steps x, y with i.i.d. uniform samples from {±1} that are independent of the 
other steps in RW . This modification cannot decrease the expected height of RW , even if there are other correlated steps in RW .

Proof. Imagine that the random walk is fixed except for what happens at x and y. Then this random walk has a height. 
And we can consider how the height is expected to change by filling in what happens at x and y if they are correlated and 
decorrelated respectively. We just need to show that the expected change is greater when x and y are decorrelated.

Imagine in this fixed random walk that we have removed the step at x and at y. Or in other words, the random walk 
stays level at these steps. Then let a denote the height of the peak before x, b the height of the peak between x and y, and 
c the height of the peak after y. If there are no steps in the walk in any of these positions, then the value of the appropriate 
variable is −∞. We then consider adding in steps at x and y (i.e. changing the fixed walk from staying level at these two 
points to taking a genuine step). We consider what happens when the two steps are correlated and uncorrelated, showing 
that no matter what relations are satisfied by a, b, c that if x and y are uncorrelated, the expected height is always greater. 
There are several different cases to consider, but they are all simple.

Case 1: a = b = c. If x and y are correlated, we change b to b −1 and b +1 each with probability 1/2, and don’t change c. 
So with probability 1/2 we increase the height by 1, with probability 1/2 it is unchanged. If x and y are uncorrelated, with 
probability 1/4 we increase c by 2 and b by 1. With probability 1/4 we leave c unchanged and increase b by 1. With 
probability 1/4 we decrease b by 1 and leave c unchanged, and with probability 1/4 we decrease b by 1 and c by 2. So 
with probability 1/4 we increase the height by 1, with probability 1/4 we increase it by 2, and with probability 1/2 we 
leave it unchanged.
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Case 2: a ≤ b < c. If x and y are correlated, they cannot change the height ever. If x and y are uncorrelated, we increase 
the height by 2 with probability 1/4 and decrease the height by 2 (or 1 if c = b + 1) with probability 1/4.

Case 3: b ≤ a < c. Same as above.
Case 4: a > b, a > c. If x and y are correlated, we do not change the height ever. If x and y are uncorrelated, we never 

decrease the height, and sometimes may increase the height if a = c + 1.
Case 5: b > a, b > c. Whether or not x and y are correlated, we increase the height by 1 with probability 1/2 and 

decrease it by 1 with probability 1/2.
Case 6: a = b > c. Whether or not x and y are correlated, we increase the height by 1 with probability 1/2 and never 

decrease it.
Case 7: a = c > b. If x and y are correlated, we never change the height. If x and y are uncorrelated, we sometimes 

increase height by 2, and sometimes don’t change it.
Case 8: b = c > a. If x and y are correlated, we never decrease c and increase b by 1 with probability 1/2. So the 

expected increase is 1/2. When x and y are uncorrelated, we increase c by 2 with probability 1/4, increase b by 1 without 
changing c with probability 1/4, and decrease b by 1 without changing c with probability 1/4, and decreases b by 1 and c
by 2 with probability 1/4. So the expected increase is 1/2 + 1/4 − 1/4 = 1/2.

In all cases, it is easy to see that the expected increase in height when x and y are uncorrelated is at least as large as the 
expected increase in height when x and y are correlated. This covers all cases and does not depend on any other existing 
correlations in RW . Therefore, decorrelating steps x and y can only increase the expected height of RW .

Using Lemma 5 and the reasoning above, we complete step 1 of the proof with the following corollary:

Corollary 6. ∀i ≥ k/2, E[H L
i ] ≤ O (i/

√
k).

We now shift to step 2 of the proof. First, define the following random walk RW ′

Random Walk RW’

1 Define RW ′(0) = 0.
2 For j > 0, given the value RW ′( j − 1) of the random walk at time j − 1, define the value RW ′( j) of the random 

walk at time j as:
• RW ′( j) = RW ′( j − 1) − 1 if Y j is a “value” and 1 ≤ j < 2k − 4

√
k + 2k2/3.

• RW ′( j) = RW ′( j − 1) + 1 if Y j is a “sample” and 1 ≤ j < 2k − 4
√

k + 2k2/3.
• RW ′( j) = RW ′( j − 1) + √

k when j = 2k − 4
√

k + 2k2/3.
• RW ′( j) = RW ′( j − 1) for j > 2k − 4

√
k + 2k2/3.

We can prove the following Lemma about RW ′ .

Lemma 6. H R
i (RW ′) ≤ H R

i (RW ) for all i ≤ k/2 with probability 1 − e−�(k) .

Proof. Let i∗ denote the index where RW shoots up by 2
√

k + 1. We first show that with high probability both of the 
following events hold:

1. 2k − 4
√

k − 2k2/3 ≤ i∗ ≤ 2k − 4
√

k + 2k2/3.
2. For all i, j ∈ [2k − 4

√
k − 2k2/3, 2 − 4

√
k + 2k2/3], RW ′(i) − RW ′( j) ≤ √

k.

Part 1 is a simple application of the Chernoff bound. If we are to have i∗ < T = 2k − 4
√

k − 2k2/3, then we must have 
seen k − 2

√
k rehearsal elements by then. If we let k′ denote the number of indices before T whose correlated partner also 

comes before T , then clearly there will be exactly k′/2 rehearsal elements from such indices. For the remaining indices, 
whether that element is rehearsed or real is independent of all other indices before T . The expected number of rehearsal 
elements from the remaining indices is exactly (T − k′)/2. So in order to see at least k − 2

√
k, this value must deviate from 

its expectation by at least k2/3. Using the additive Chernoff bound we get that:

Pr[more than k − 2
√

k rehearsals before T ] ≤ 2e−k4/3/(2T −2k′) ≤ 2e−k1/3/4

An analogous argument holds to show that i∗ < 2k − 4
√

k + 2k2/3 with high probability by showing that the probability 
that we see fewer than k − 2

√
k rehearsals by then is equally tiny. Therefore, using a union bound, part 1 holds with 

probability at least 1 − 4e−k1/3/4.
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Part 2 is also an application of the Chernoff bound. For any fixed i, j, the expected value of RW ′(i) − RW ′( j) is 0. There 
are some steps between i and j that are correlated, and will always cancel each other out. The remaining steps are all 
independent and there are at most 4k2/3 of them. So RW ′(i) − RW ′( j) must deviate from its expectation by at least 

√
k

and we can apply the Chernoff bound again to say that:

Pr[|RW ′(i) − RW ′( j)| ≥ √
k] ≤ 2e−k1/3/8

We can now take a union bound over all O (k4/3) ordered pairs of i, j to get that with probability at least 1 −
8k4/3e−k1/3/8, RW ′(i) − RW ′( j) ≤ √

k for all i, j. So taking a final union bound gives us that with high probability parts 1 
and 2 both hold.

Now let’s couple RW and RW ′ to use the same coin flips. In other words, when Y j is determined to be real or rehearsal, 
it is the same for both walks. Also assume that parts 1 and 2 hold for RW and RW ′ respectively. We now show that as 
long as these two assumptions hold, then for any i ≤ k/2, H R

i (RW ′) ≤ H R
i (RW ).

Because i ≤ k/2, it must be the case that i < i∗ , so RW (i) = RW ′(i). Let j ≥ i be the index maximizing RW ′( j) − RW ′(i). 
Then H R

i (RW ′) = RW ′( j) − RW ′(i). There are two cases to consider. Say j < i∗ . Then RW ′( j) = RW ( j), and therefore 
RW ( j) − RW (i) = RW ′( j) − RW ′(i), so we immediately get that H R

i (RW ) ≥ H R
i (RW ′). Otherwise, i∗ ≤ j ≤ 2k −4

√
k+2k2/3. 

Then RW ′( j) − RW ′(i) ≤ 2
√

k + RW ′(i∗) − RW (i) by our two assumptions. By the definition of RW , we also have that 
RW (i∗) − RW (i) = RW ′(i∗) + 2

√
k − RW (i), so this exactly says that RW ′( j) − RW ′(i) ≤ RW (i∗) − RW (i), also giving us 

that H R
i (RW ) ≥ H R

i (RW ′). It cannot be the case that j > 2k − 4
√

k + 2k2/3 because we defined RW ′ to stop changing after 
this. So this covers every possible case, and in all cases H R

i (RW ) ≥ H R
i (RW ′). Because our assumptions hold with high 

probability, so does the result.

We now finish by showing that for all j ≤ k/2, H R
j (RW ′) = 0 with probability O (1/

√
k). We prove this claim in two 

steps. First, we show that if RW ′ had no correlated steps, then H R
j (RW ′) = 0 with probability O (1/

√
k) for all j. Then 

we show that removing a specific correlated pair only increases the probability that H R
j (RW ′) = 0, regardless of any other 

correlation in RW ′ . We can apply this argument a finite number of times to remove all correlated pairs without de-
creasing the probability that H R

j (RW ′) = 0. Therefore, because this probability is now O (1/
√

k), it must be the case that 
Pr[H R

j (RW ′) = 0] ≤ O (1/
√

k) to begin with.

We now take the first step. Let RW ′′ denote RW ′ without the 
√

k jump at the end. Then in order for H R
i (RW ′) = 0, 

we must have RW ′′( j) ≤ RW ′′(i) for all j ≥ i and RW ′′(2k − 4
√

k + 2k2/3) ≤ RW ′′(i) − √
k. We show that if RW ′′ has no 

correlated steps, then both of these occur with low probability.

Lemma 7. Let RW ′′ be a random walk with n truly independent steps. Then for all n, the probability that H(RW ′′) = 0 and RW ′′(n) ≤
−√

k is O (1/
√

k).

Proof. We first compute the probability that H(RW ′′) > 0 and RW ′′(n) ≤ −√
k using the reflection principle. For any fixed 

walk with H(RW ′′) > 0 and RW ′′(n) ≤ −√
k, let i be the last index with RW ′′(i) = 1. Consider the mapping that sets 

RW ′′( j) = 2 − RW ′′( j) for all j > i. This mapping is clearly injective and always has RW ′′(n) ≥ √
k + 2. In fact, the same 

mapping takes any fixed random walk with RW ′′(n) ≥ √
k + 2 and turns it into a random walk with H(RW ′′) > 0 and 

RW ′′(n) ≤ −√
k, thereby creating a bijection. In other words, this mapping bears evidence that Pr[H(RW ′′) > 0 ∧ RW ′′(n) ≤

−√
k] = Pr[RW ′′(n) > 2 + √

k].
Furthermore, we can write Pr[H(RW ′′) = 0 ∧ RW ′′(n) ≤ −√

k] = Pr[RW ′′(n) ≤ −√
k] − Pr[H(RW ′′) > 0 ∧ RW ′′(n) ≤

−√
k], which by the above work is exactly Pr[RW ′′(n) ≥ √

k] − Pr[RW ′′(n) ≥ 2 + √
k] = Pr[RW ′′(n) ∈ {√k, 

√
k + 1}] ≈( n

n/2+√
k/2

)
/2n . So now we just want to bound this value.

We observe first that for all n that:( n+2
n/2+1+√

k/2

)
2n+2

=
( n

n/2+√
k/2

)
2n

× (n + 2)(n + 1)

4(n/2 − √
k/2 + 1)(n/2 + √

k/2 + 1)

=
( n

n/2+√
k/2

)
2n

× n2 + 3n + 2

n2 + 4n + 4 − k
In other words, for n < k − 2, the value increases when we increase n by 2. For n > k − 2, the value decreases when 

we increase n by 2. Therefore, the value is maximized around n = k, where it is obvious that 
( k

k/2+√
k/2

)
/2k ≤ O (1/

√
k). 

Therefore, for all n, the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −√
k is O (1/

√
k).

Finally, we prove that removing the correlated pairs in RW ′ only increases the probability that H R = 0:
i
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Lemma 8. Let RW ′′ be a random walk on n steps where some pairs of steps (x1, y1), . . . , (xz, yz) are negatively correlated. Let xi < yi
for all i and y1 < . . . < yz. Then removing x1, y1 from RW ′′ only increases the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −m, for 
all n, m.

Proof. Observe first that we are not claiming that removing any correlated pair can only increase this probability, but that 
there is always a “correct” pair that we can remove without decreasing the probability. For a fixed random walk, imagine 
removing steps x1 and y1 (i.e. don’t move at these steps). Then let a denote the height of the highest peak before x1, b
denote the height of the highest peak between x1 and y1, c denote the height of the highest peak after y1, and d the value 
of RW ′′(n). Also let S(a, b, c, d) denote the set of all instances of RW ′′ that respect the correlation between the pairs of 
steps (x2, y2) through (xz, yz) with respective peak heights a, b, c and also satisfy RW ′′(n) = d. Then every instance of RW ′′
is in exactly one set, and whether or not H(RW ′′) = 0 and RW ′′(n) ≤ −m depends only on which S(a, b, c, d) the instance 
is in. We now want to look at which sets will satisfy this regardless of how steps x1 and y1 are set, and which sets may or 
may not satisfy it depending on how x1 and y1 are set.

We observe that setting x1 and y1 can never change a, c, or d, but may increase or decrease b by 1. So if a > 0, b > 1, c >

0, or d > −m, then we will never have H(RW ′′) = 0 and RW ′′(n) ≤ −m no matter how x1, y1 are set. Likewise, if we have 
a ≤ 0, b < 0, c ≤ 0, and d ≤ −m, then we will always have H(RW ′′) = 0 and RW ′′(n) ≤ −m no matter how x1, y1 are set. 
The interesting cases are when we have a ≤ 0, c ≤ 0, d ≤ −m and b ∈ {0, 1}. If we remove x1 and y1, then all of these cases 
with b = 1 will not have H(RW ′′) = 0, and those with b = 0 will. If we keep x1 and y1, then exactly half of both cases will 
have H(RW ′′) = 0. We show that there are more of the latter case than the former. In other words, if we removed x1 and 
y1, instead of splitting these cases 50–50, more of them would yield H(RW ′′) = 0 and RW ′′(n) ≤ −m. Therefore removing 
x1 and y1 only increases the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −m. We prove this by giving an injective map 
from the former case to the latter.

Consider any instance of RW ′′ in S(a, 1, c, d) with a ≤ 0. Let i denote the first index after x1 with RW ′′(i) = 1. Then it 
must be the case (because a ≤ 0) that RW ′′(i − 1) = 0. So consider changing RW ′′ to take a step down at i instead of up 
(i.e. set RW ′′(i) = −1). If i was part of a correlated pair, then also change RW ′′ to take a step up at its partner, j. It is clear 
that we have not changed a. We might have decreased c by 2, 1, or 0, depending on if i was part of a correlated pair and 
where its partner was located, and we might have decreased d by 2 or 0, depending on if i was part of a correlated pair. 
Furthermore, this map is injective. Observe first that we can determine the index i of the instance of RW ′′ where the flip 
happened by looking at its image under the map. A priori, i could be any index between x1 and y1 with RW ′′(i − 1) = 0
and RW ′′(i) = −1. But in fact, i must necessarily be the last of such indices. Assume for contradiction that there were 
some i < i′ < y1 with RW ′′(i′ − 1) = 0 and RW ′′(i′) = −1 in the image. Then the pre-image would have taken a step 
up at i instead of down, and we would have had RW ′′(i′ − 1) = 2 in the pre-image, meaning that the instance was not 
in S(a, 1, c, d). Even if i was part of a correlated step, by our choice of x1, y1, its partner necessarily occurs after y1, and 
therefore will not cancel out the change from switching RW ′′(i) by the time we take step i′ − 1. Since we can determine 
the index i from the image, and it is obvious that if two instances of RW ′′ have the same image and had the same step 
switched they must be the same, this map is injective. Finally, the map only decreases c and d. So in particular, if:

S1 = ∪a≤0,c≤0,d≤−m S(a,1, c,d)

S0 = ∪a≤0,c≤0,d≤−m S(a,0, c,d)

then we have shown an injective map from S1 to S0. Also denote by S2 all other instances of RW ′′ with H(RW ′′) = 0 and 
RW ′′(n) ≤ −m, and S3 the remaining instances of RW ′′ . Then the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −m when 
we have removed x1 and y1 is exactly:

|S0| + |S2|
|S0| + |S1| + |S2| + |S3|

And the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −m when we keep x1 and y1 is exactly:

|S0|/2 + |S1|/2 + |S2|
|S0| + |S1| + |S2| + |S3|

By showing an injective map from S1 to S0, we have shown that the first probability is greater. Namely, removing x1
and y1 can only increase the probability that H(RW ′′) = 0 and RW ′′(n) ≤ −m.

Now by Lemma 8, we can continue removing the earliest-ending correlated pair from RW ′ until we get a random walk 
with truly independent steps (and 

√
k jump at the end) whose probability of having H(RW ′) ≥ 0 has only increased. By 

Lemma 7, we know that this value is O (1/
√

k). So together, this says that Pr[H R
j (RW ′) = 0] ≤ O (1/

√
k) for all j ≤ k/2. 

Finally, by Lemma 6 and the fact that H R
i (RW ) ≤ k always, we get that Pr[H R

j (RW ) = 0] ≤ O (1/
√

k). This exactly says 
that the expected number of j ≤ i with H R

j (RW ) = 0 is O (i/
√

k) for all i ≤ k/2. By Facts 1 and 2 we now have that 
E[max{H L(RW ) − H R(RW ), 0}] ≤ O (i/

√
k).
i i
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So now we have shown that for all i ≤ 2k, E[max{H L
i (RW ) − H R

i (RW ), 0}] ≤ O (i/
√

k), completing the proof of Theo-

rem 5, and proving that the rehearsal algorithm obtains a competitive ratio of 1 − O (1/
√

k).

7. Conclusion

This paper proposes the first prior-independent mechanisms for multi-dimensional settings with asymmetric bidders. Our 
results also yield new prior-independent mechanisms when valuation distributions are regular, independent and identical. 
Our approach is quite general, and builds off of previously developed tools of Chawla et al. (2010), Hartline and Roughgarden
(2009), Dhangwatnotai et al. (2010). Our main technical workhorse is the development of limited information prophet 
inequalities.

There are two exciting directions for future work. The first is to extend our mechanism design framework to accom-
modate further generalizations (for instance, asymmetric regular distributions), or to identify formal barriers that would 
prevent these results from being generalized. The second is to design new single-sample prophet inequalities in settings 
where full-information prophet inequalities exist, but where algorithms for the secretary problem are unknown, such as 
arbitrary matroids.

Appendix A. The free-order model and SPMs

In this Section, we provide an improved and simplified analysis of the secretary algorithm in the free-order model 
proposed by Jaillet et al. (2012), and show that it implies a single-sample SPM for all matroids. Note that Yan (2011) has 
already shown a (1 −1/e)-approximate SPM for all matroids, so the contribution of the work below is that the SPM requires 
just a single sample. Let’s first recall their algorithm:

1. Initialize the set of accepted elements, A, to ∅.
2. Sample k = Binomial(n, 1/2) elements uniformly at random from U and call these the sample set, S . Call the remaining 

elements P .
3. Find the max-weight basis of S under J . Label these elements in decreasing order of weight, X1, . . . , Xk .
4. Set i = 1.
5. Draw one at a time in any order each element y ∈ P ∩ (span({X1, . . . , Xi}) − span({X1, . . . , Xi−1})). Add y to A iff 

A ∪ {y} ∈J and v y > v Xi .
6. Increment i by one and return to step 5. If i = k, and there are any elements not spanned by {X1, . . . , Xm}, process 

them as in step 5.

We first recall a Lemma from Jaillet et al. (2012):

Lemma 9. (Jaillet et al., 2012) If y is in the max-weight basis of U under J , and y ∈ P , then we will always have v y > v Xi when it is 
processed in step 5. The only way the algorithm will not accept y is if A already spans y.

Proof. By definition, we know that y ∈ span({X1, . . . , Xi}), and v X1 > . . . > v Xi . So if v y < v Xi , greedy would not select y, 
and y cannot possibly be in the max-weight basis of U under J .

Definition 4. Let Z1, . . . , Zm′ list elements of S in decreasing order of weight for any S ⊆ U . Let i(y) be the minimum i such 
that y ∈ span({Z1, . . . , Zi}) (if one exists). Then we say the cost of y with respect to S is v(Zi(y)) (or 0 if no i(y) exists). 
Denote this by C(y, S).

Lemma 10. For all y ∈ U , if y ∈ P and C(y, S) > C(y, P − {y}), A will not span y when it is processed by the algorithm in step 5.

Proof. First, we observe by the definition of the algorithm that when y is processed, the only elements that could possibly 
be added to A are of weight at least v Xi . So if y is already spanned, it must be spanned by a subset of P − {y} whose 
elements all have weight at least v Xi . However, it is obvious that C(y, S) = v Xi . It is also obvious that if y is spanned by a 
subset of P − {y} whose elements all have weight at least v Xi , that C(y, P − {y}) is at least v Xi . Therefore, if A spans y at 
the time the algorithm processes y, it must be the case that C(y, P − {y}) > C(y, S), proving the Lemma.

Theorem 6. The algorithm of Jaillet et al. (2012) obtains a competitive ratio of 1
4 whenever J is a matroid.

Proof. Clearly, for all y, y ∈ P with probability 1/2. Conditioned on this, it is also clear that C(y, S) > C(y, P − {y}) with 
probability 1/2. This is because whenever we sample P − {y} and S , they are switched with probability 1/2 and the costs 
are flipped as well. By Lemma 9 and 10, every element in the max-weight basis of U under J , y, is accepted whenever 
y ∈ P and C(y, S) > C(y, P −{y}). As this happens with probability 1/4, every element of the max-weight basis is accepted 
with probability 1/4, so the algorithm obtains a competitive ratio of 1/4.
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It is easy to see that this algorithm implies a single-sample prophet inequality for all matroids where the gambler gets 
to choose the order, and that no samples from elements that can possibly be accepted are used. Therefore, we immediately 
get the following SPM:

Theorem 7. Let J be any matroid and let each Di be MHR. The there exists a truthful SPM requiring only a single sample from D
that guarantees a revenue competitive ratio of 1

8e and a welfare competitive ratio of 1
8 . When the distributions Di are independent and 

regular, this algorithm obtains a revenue and welfare competitive ratio of 1
8 .
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