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We develop a tractable model of endogenous production networks. Each one of a
number of products can be produced by combining labor and an endogenous subset
of the other products as inputs. Different combinations of inputs generate (prespeci-
fied) levels of productivity and various distortions may affect costs and prices. We es-
tablish the existence and uniqueness of an equilibrium and provide comparative static
results on how prices and endogenous technology/input choices (and thus the produc-
tion network) respond to changes in parameters. These results show that improvements
in technology (or reductions in distortions) spread throughout the economy via input–
output linkages and reduce all prices, and under reasonable restrictions on the menu
of production technologies, also lead to a denser production network. Using a dynamic
version of the model, we establish that the endogenous evolution of the production net-
work could be a powerful force towards sustained economic growth. At the root of this
result is the fact that the arrival of a few new products expands the set of technological
possibilities of all existing industries by a large amount—that is, if there are n products,
the arrival of one more new product increases the combinations of inputs that each
existing product can use from 2n−1 to 2n, thus enabling significantly more pronounced
cost reductions from choice of input combinations. These cost reductions then spread
to other industries via lower input prices and incentivize them to also adopt additional
inputs.

KEYWORDS: Economic growth, economic networks, input–output linkages, network
formation organization of production, production network, productivity.

1. INTRODUCTION

MANY GOODS AND SERVICES are produced with more complex supply chains today than
in the past. For example, agricultural production now uses satellites to evaluate crop
yields, sensors, GPS devices, and other electronics for automatic navigation, and special-
ized computer software and hardware as well as sensors to test soil quality.1 Automotive
manufacturing has undergone an even deeper transformation. The first commercial car
designed by Karl Benz in 1885 had a body made of wood and steel. Modern car bodies are
instead made of aluminum alloys and carbon fibers.2 At the same time, carburetors have
been replaced by electronic fuel injectors, traditional exhaust systems have been trans-
formed with catalytic converters, and a range of electronic components, sensors, com-
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34 D. ACEMOGLU AND P. D. AZAR

FIGURE 1.—Evolution of U.S. input–output linkages. Average degree (number of suppliers) from the U.S.
summary input–output tables, 1963–1996. We use the harmonized commodity-by-commodity matrix, which is
available for 61 industries during this period.

puter software, and chemicals and hydraulics have been added to improve aerodynamic
efficiency, steering, driving, and safety. The range of inputs used for design, assembly,
welding, and painting have also expanded, most importantly with the introduction of var-
ious different types of robots and dedicated machinery. The production of telecommuni-
cation equipment has undergone major changes, too. For example, cables are no longer
made from iron and steel or from copper, but from optic fiber; their insulation material
now uses pvc and polyethylene instead of cotton, lead, and copper.3 The resulting im-
provements in cable quality in turn impacted other industries where cables are used as
input, most notably telephony, television, and internet services. The change in produc-
tion supply chains is not limited just to the introduction of new materials and electronic
hardware and software. Many more industries now use management consulting and other
business services in their production process.

Even though the aforementioned changes take place at the level of disaggregated in-
puts, similar trends are visible at a more aggregated level as well. Figure 1 uses the har-
monized input–output tables of the U.S. economy for 61 summary industries from the
Bureau of Economic Analysis (BEA) to show that the range of inputs for the typical U.S.
industry has expanded over the last several decades. The average number of suppliers
across the 61 industries in 1963 was less than 50. By 1996, this had increased to more than
57. There are similar differences in input–output linkages across countries and regions.4

What explains the different structures of input usage over time and across coun-
tries? Do these differences contribute to productivity and growth differences across these
economies? In this paper, we take a first step towards answering these questions by de-
veloping a tractable framework with endogenous input–output linkages.

3https://www.copper.org/applications/telecomm/consumer/evolution.html.
4For example, in OECD data, the input–output matrices of more advanced economies such as the United

States or Germany are denser than those of developing economies such as Mexico or Argentina (http://www.
oecd.org/trade/input-outputtables.htm). Relatedly, Boehm and Oberfield (2018) documented large differences
in firm supply chains across different states of India.

 14680262, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
15899 by T

est, W
iley O

nline L
ibrary on [08/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.copper.org/applications/telecomm/consumer/evolution.html
http://www.oecd.org/trade/input-outputtables.htm
http://www.oecd.org/trade/input-outputtables.htm


ENDOGENOUS PRODUCTION NETWORKS 35

In our model, each one of n industries decides which products to use as inputs, and
then how much of each one of these inputs to purchase. Each different input combination
leads to a different constant returns to scale production function. We suppose in addition
that costs in each industry are affected by “distortions,” which could result from taxes,
contracting frictions, or markups. The market structure in our economy is “contestable”—
meaning that several firms have access to the same menu of technologies. This ensures
that in equilibrium, each industry chooses the cost-minimizing quantities of inputs and
sets its price equal to this minimal unit cost, and by the same reasoning, also chooses the
cost-minimizing technology. In equilibrium, the choice of inputs and technology in each
industry is cost-minimizing, and price is proportional to marginal cost.5

Our first major results establish the existence and generic uniqueness of an equilibrium
and explore its efficiency properties. The equilibrium has an intuitive structure, which we
exploit to establish several comparative static results. First, when a product adopts addi-
tional inputs, this reduces not just its price but all prices in the economy (relative to the
wage)—because this product is now a cheaper input to all other industries. Second, under
a reasonable restriction on the menu of technologies, we establish that a change in tech-
nology that makes the adoption of additional inputs more productive for one industry—
or an exogenous reduction in distortions—reduces all prices in the economy and via this
channel induces an expansion in the set of input suppliers for all industries. Third, we also
show that comparative statics are potentially “discontinuous”: a small change for a single
industry can cause a large change in GDP and/or trigger a major shift in the production
structure of many industries.

We then extend this model to a dynamic setup. We assume that a new product arrives
at each date and can be adopted as an input by other sectors (but generates only limited
utility benefits so that economic growth will not result from love-for-variety). Our main
result establishes that when firms choose the cost-minimizing combination of inputs, the
economy achieves sustained growth in the long run. Intuitively, with n products in the
economy, each industry has a choice between 2n−1 combinations of inputs. With one more
product added to the mix, the number of feasible input combinations increases to 2n for
each one of the n existing products. The choice of the best technique from this (signif-
icantly) expanded set of options leads to nontrivial cost reductions. Crucially, however,
economic growth is not just driven by the cost reductions enjoyed by the product making
the choice, but also by the induced cost reductions that this generates for other industries
through input–output linkages. We show that if the distribution of log productivity of
different combinations has sufficiently thick tails (e.g., exponential or Gumbel), this grad-
ually expanded set of options for production techniques generates exponential growth.6
This growth result is robust to a variety of modifications in the environment such as allow-
ing only a subset of industries to choose their inputs, introducing restrictions on the set of
allowable input combinations, varying or endogenizing the rate at which new products are
introduced, and incorporating “creative destruction” (new products replacing old ones).7

5Throughout, we use the terms “technology choice,” “set of inputs,” and “input combination” interchange-
ably. We also use input–output structure (linkages) and production network interchangeably.

6If log productivity has an exponential distribution, then the level of productivity has a Pareto distribution,
and if log productivity has a Gumbel distribution, then the level of productivity has a Frechet distribution.

7Notably, the origins of growth in our economy are different than those emphasized in the previous liter-
ature. First, the nature of growth in our model is connected to but different from the idea of recombinant
growth in Weitzman (1998), as well as the related ideas in Auerswald, Kauffman, Lobo, and Shell (2000) and
Ghiglino (2012). In particular, in contrast to the recombinant growth notion, in our model ideas are not gen-
erated by combining, or searching within the set of all existing ideas; rather, a small trickle of new products
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36 D. ACEMOGLU AND P. D. AZAR

We further use the tractable special case of our model with Cobb–Douglas production
technologies and Gumbel-distributed log productivity terms to derive an explicit logistic
equation linking the likelihood of an industry being used as a supplier to another industry
to the vector of prices. Using this equation, we show that while the distribution of “in-
degrees” (the number of suppliers per product) has only limited inequality or asymmetry
across sectors, the distribution of “outdegrees” (the number of customers of each indus-
try) is much more unequal. This prediction is consistent with the structure of U.S. input–
output tables. Moreover, under an additional assumption on the distribution of sectoral
shares, we show that the distribution of outdegrees in our model is Pareto—a pattern
that also matches the stylized facts documented in Acemoglu, Carvalho, Ozdaglar, and
Tahbaz-Salehi (2012).

Finally, we make a first attempt to investigate the contribution of changing input com-
binations to productivity growth. We use data from the U.S. economy from 1987 to 2007
in order to estimate the contribution of changes in supplier sets to industry productivity.
Our estimates suggest that new input combinations may account for between 40% and
64% of average industry TFP growth. Naturally, this exercise should be interpreted with
caution, since it relies on the simplified structure of our model, and the observed relation-
ship between new input combinations and industry productivity growth could be driven
by other omitted factors. Nevertheless, this illustrative exercise highlights that the contri-
bution of new input combinations to productivity growth could be quite important and
should be studied more systematically in the future.

Our paper relates to a growing literature on the role of input–output linkages in
macroeconomics, including Long and Plosser (1983), Ciccone (2002), Gabaix (2011),
Jones (2011), Acemoglu et al. (2012), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017),
Bartelme and Gorodnichenko (2015), Bigio and La’O (2016), Baqaee (2018), Fadinger,
Ghiglino, and Teteryatnikova (2016), Liu (2017), Baqaee and Farhi (2019a, 2019b), and
Caliendo, Parro, and Tsyvinski (2017). Some of these papers, including the last three,
allow for non-Cobb–Douglas technologies and thus endogenize the intensity with which
different inputs are used (and thus the different entries of the input–output matrix). How-
ever, they do not investigate which combinations of inputs will be used—that is, the ex-
tensive margin of the input–output matrix—which is our focus in this paper. Our analysis
demonstrates that both the mathematical structure of this problem and its economic im-
plications are very different from intensive margin decisions. In particular, our results on
comparative statics of the equilibrium production network, on endogenous growth from
input combinations, and on cross-sectional implications have no counterpart in this liter-
ature.8

significantly expands the input combinations that existing products can use, and this then spreads to the rest of
the economy by reducing costs for others. Second, as already hinted at, growth is not driven by the combination
of expanded products and love-for-variety (as would be the case in Romer (1990) or Grossman and Helpman
(1992)). Third, it is not a consequence of proportionately more products or innovations arriving over time (as
is the case in Romer (1990), Jones (1995), Eaton and Kortum (2001), or Klette and Kortum (2004)). Fourth,
it is not driven by proportional improvements in the productivity of all industries as in quality-ladder models
(as in Aghion and Howitt (1992) or Grossman and Helpman (1991)). Finally, it is also not due to thick-tailed
productivity draws that continuously improve technology and spreading in the economy via a diffusion pro-
cess (as in Akcigit, Celik, and Greenwood (2016), Lucas (2009), Lucas and Moll (2014), or Perla and Tonetti
(2014)). Crucially, even though the distribution of productivity across different input mixes is thick-tailed in
our economy, this by itself does not lead to sustained growth. It is the conjunction of the significant increase
in the number of options of input combinations and the endogenous change in the attractiveness of input
combinations following changes in prices that underpins growth.

8More recently, Bigio and La’O (2016), Liu (2017), Caliendo, Parro, and Tsyvinski (2017), and Baqaee
and Farhi (2019b) analyzed the implications of distortions in input–output economies, but did not focus on
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ENDOGENOUS PRODUCTION NETWORKS 37

A few recent papers on endogenous input–output linkages are more closely related to
our work. Carvalho and Voigtländer (2015) construct a model in which producers search
for new inputs and confront some of the implications of this model with the U.S. input–
output tables. Atalay, Hortaçsu, and Syverson (2011) study the choice of suppliers at the
firm level. More closely related to our paper are the important prior work by Oberfield
(2017), independent contemporaneous work by Taschereau-Dumouchel (2017), and more
recent work by Boehm and Oberfield (2018). Oberfield constructs an elegant model of the
endogenous evolution of the input–output architecture, but with two notable differences
from our work. First, at a technical level, Oberfield considers a matching model, which
does not lead to the type of general equilibrium characterization and comparative static
results we present below. Second and more importantly, for tractability reasons Oberfield
restricts attention to a situation in which each good can only use a single supplier and
as a result cannot study the questions that make up our main focus—how the technol-
ogy choice of an industry affects the structure of input–output linkages for the entire
economy, equilibrium complementarities, and sustained long-run growth. Taschereau-
Dumouchel (2017) studies the formation of a production network in the context of busi-
ness cycle dynamics. Focusing on the social planner’s problem, he investigates whether
the formation and the response to shocks of equilibrium networks exacerbate economic
volatility. Subsequent work by Boehm and Oberfield (2018) constructs a firm-level model
of input choices and estimated it on microdata. Finally, Gualdi and Mandel (2019) con-
sider an agent-based model where firms combine new inputs following some simple rules
on input adoption and imitation, and show via simulations that their setup can generate
long-run growth. Though the mechanism that leads to economic growth in that paper is
related to ours, their framework neither contains the characterization and comparative
static results we present nor clarifies the source of sustained growth and its limitations.

Our paper is also related to the literature on sourcing decisions in international trade,
for example, Chaney (2014), Antràs and Chor (2013), Eaton, Kortum, and Kramarz
(2011), Antràs, Fort, and Tintelnot (2017), Lim (2017), and Tintelnot, Kikkawa, Mogstad,
and Dhyne (2017). None of these papers study the endogenous determination of the pro-
duction network or the implications we focus on, such as the comparative statics of the
production network, endogenous growth, and cross-sectional regularities.

The rest of the paper is organized as follows. The next section introduces our basic
model. Equilibrium existence, uniqueness, and efficiency are studied in Section 3. Sec-
tion 4 presents our main comparative static results. Section 5 presents our growth model
and shows how sustained economic growth can emerge in this setup. Section 6 derives the
cross-sectional implications of our model. Section 7 presents a preliminary investigation
of the contribution of changing input–output combinations to U.S. productivity growth.
Section 8 concludes, while the Appendices contain the proofs of the results stated in the
text as well as some additional theoretical, empirical, and quantitative results.

NOTATION: For any pair of m-dimensional vectors α�β ∈ R
m, we write α ≥ β if and

only if αi ≥ βi for every i ∈ {1� � � � �m}, and α > β if α ≥ β and there exists at least one i
such that αi > βi. For any two functions f�g :D→ R

m, we write f ≥ g if f (x)≥ g(x) for
all x ∈D. If α ∈ R

n×m is a matrix, we denote the row vector {αij}mj=1 by αi. Unless speci-
fied otherwise, we will use lowercase variables to denote logarithms of the corresponding
uppercase variables. For example, if P = (P1� � � � �Pn) ∈ R

n
>0 is a vector of prices, then

p= (p1� � � � �pn)= (logP1� � � � � logPn) will denote the vector of log prices.

endogenous input–output linkages. Nor did they provide the general characterization, existence, uniqueness,
and comparative static results we present.
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38 D. ACEMOGLU AND P. D. AZAR

2. MODEL

In this section, we introduce our static model, which features endogenous input choice
subject to distortions. We analyze this model in the next two sections and then generalize
it to a dynamic setting in Section 5.

2.1. Production Technology, Market Structure, and Preferences

There is a set N = {1�2� � � � � n} of industries, each producing a single good, denoted
by Yi for industry i. Throughout, we assume that each industry is contestable in the sense
that a large number of firms have access to the same production technology and can enter
any sector without any entry barriers. This will ensure that equilibrium profits are always
equal to zero. When this will cause no confusion, we work with a representative firm for
each industry, and use industry i, product i, and firm i (for i ∈N ) interchangeably.

The production technology for industry i is

Yi = Fi
(
Si�Ai(Si)�Li�Xi

)
�

Here, Li is the amount of labor used, Si ⊂ {1�2� � � � � n} denotes the set of (endogenous)
suppliers, Xi = {Xij}j∈Si is the vector of intermediate goods, and Ai(Si) designates the
productivity of the technology generated by the use of inputs in the set Si (and for now,
we do not need to specify its dimension).9 We assume throughout that Fi does not depend
on Xij for j /∈ Si. The dependence of the technology of production on the set of inputs is
the crucial feature of our model and captures the possibility that, by combining a richer
set of inputs, an industry may achieve greater productivity. Motivated by this aspect of
input choice, we interchangeably refer to the choice of Si as technology choice or choice of
input suppliers.10 We impose the following assumption on this production technology:

ASSUMPTION 1: 1. For each i = 1�2� � � � � n, Fi(Si�Ai(Si)�Li�Xi) is strictly quasi-
concave, exhibits constant returns to scale in (Li�Xi), and is increasing and continuous
in Ai(Si), Li, and Xi, and strictly increasing in Ai(Si) when Li > 0 and Xi > 0.

2. Labor is an essential factor of production in the sense that Fi(0� ·� ·� ·) = 0 for each
i= 1�2� � � � � n.

3. For each i= 1�2� � � � � n, Ai(∅) > 0.

Constant returns to scale on the production side is natural. The strict quasi-concavity
of the production function ensures that input demands given technology are uniquely
determined, while the feature that output is increasing in the productivity parameters
enables us to identify “better technology” with greater Ai(Si). The assumption that labor
is essential rules out the extreme possibility that labor can be made redundant by some
combination of existing inputs and ensures that the output level of each industry will
always be finite. Finally, the third part of the assumption guarantees that each sector can
produce positive output without adopting any other goods as inputs (just by using labor).

9Clearly, Li , Xi , and Yi as well as consumption Ci are nonnegative for all i, but we leave this restriction
implicit throughout to simplify the notation.

10In this section, we assume for notational convenience that any combination of inputs is admissible. We
discuss this issue further in Section 5, where we generalize the setup so that some input classes are “essential”
for certain sectors (e.g., precision tools need to use at least some metals). We also assume that each industry
can use its own output as an input, which is only relevant for our quantitative exercise below (since the diagonal
elements of the U.S. input–output matrix are nonzero).
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ENDOGENOUS PRODUCTION NETWORKS 39

We model the consumer side via a representative household whose preferences are
given by

u(C1� � � � �Cn)� (1)

and impose the following minimal conditions:

ASSUMPTION 2: u(C1� � � � �Cn) is continuous, differentiable, increasing, and strictly quasi-
concave, and all goods are normal.11

The representative household has one unit of labor endowment, which it supplies in-
elastically, and receives the profits, if any, from all industries. Throughout, we choose the
wage as the numeraire,12

W = 1�

We also introduce distortions, which could result from taxes, regulations, contracting
frictions, credit market imperfections, or markups. Specifically, we assume that industry
i is subject to a distortion equal to μi ≥ 0, modeled as an effective ad valorem tax at
the rate μi. This implies that, due to the distortions, the marginal cost of industry i is
multiplied by 1+μi. Clearly, when μi = 0 for all i, we have a fully competitive/contestable
economy. Depending on their source, distortions may be pure waste or generate revenues
for either firms or the government to be rebated back to the representative household.
We assume that a fraction λi of the revenues generated by distortions from industry i are
distributed back to the representative household and the rest are waste. So λi = 0 for all
i corresponds to the case where distortions are pure waste, while λi = 1 captures the case
in which all distortions generate tax revenues or profits for firms.13 Denoting the price of
good i (inclusive of distortions and markups if any) by Pi, the budget constraint of the
representative household can then be written as

n∑
i=1

PiCi ≤ 1 +
n∑
i=1

Λi� (2)

where Λi = λi μi
1+μi PiYi denotes the revenue from distortions in industry i rebated back to

the representative household.

11The assumptions that u is differentiable and all goods are normal are used only in the proof of Lemma 1
and can be relaxed, though at the expense of significant additional complications.

12This is without loss of generality since the second and third parts of Assumption 1 ensure that there is
positive labor demand for labor and thus the wage has to be nonzero.

13This modeling of distortions is similar to that in Bigio and La’O (2016), Liu (2017), Caliendo, Parro, and
Tsyvinski (2017), and Baqaee and Farhi (2019a), though these papers differ in whether they assume distortions
are pure waste or generate revenues. Our formulation nests these various possibilities.

A straightforward generalization of our formulation is to assume that distortions are customer or “edge”
specific as well (i.e., equal to μij for inputs supplied to industry j). This might be because of customer-specific
taxes or because of contracting frictions that apply between some customer-supplier pairs (see Boehm and
Oberfield (2018), for a model of such frictions). For notational simplicity, we focus on the case where there is
a single industry-specific distortion, μi , even though all of our results readily generalize to an environment in
which distortions depend on the destination industry, i.e., take the form μij (and in this case we could also set
μii = 0 so that an industry’s purchase of its own output is not subject to distortions or markups).
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40 D. ACEMOGLU AND P. D. AZAR

2.2. Cost Minimization

The contestable market structure implies that price in each industry will be equal to
effective marginal cost (inclusive of the distortions). We first derive this marginal cost
by considering the cost minimization problem in each industry. Let us break this cost
minimization problem down into two parts: first, choose Xi and Li taking Si as given, and
then choose the set of suppliers or “technology,” Si. The first step determines the unit cost
function Ki(Si�Ai(Si)�P) as

Ki

(
Si�Ai(Si)�P

) = min
Xi�Li

Li +
∑
j∈Si
PjXij

subject to Fi
(
Si�Ai(Si)�Li�Xi

) = 1�

(3)

The unit cost function is conditioned on the set of inputs, Si, because this determines
which prices matter for costs, and also captures the dependence of the technology of
production and thus the cost function on the set of inputs beyond the productivity shifter
Ai(Si). In addition, because Fi is strictly increasing and continuous in Ai, the unit cost
function Ki(Si�Ai�P) is strictly decreasing and continuous in Ai.

The second step of cost minimization is the choice of technology/input suppliers to
minimize this unit cost function for each i= 1�2� � � � � n, that is,

S∗
i ∈ arg min

Si
Ki

(
Si�Ai(Si)�P

)
� (4)

Given this cost function and distortion μi, the equilibrium price of industry i is given
by P∗

i = (1 + μi)Ki(S
∗
i �Ai(S

∗
i )�P), and then the amount rebated to the representative

household is

Λ∗
i = λi μi

1 +μi P
∗
i Y

∗
i � (5)

where Y ∗
i denotes its output.

2.3. Equilibrium

DEFINITION 1—Definition of Equilibrium: An equilibrium is a tuple (P∗� S∗�C∗�L∗�
X∗�Y ∗) such that

1. (Contestability) For each i= 1�2� � � � � n,

P∗
i = (1 +μi)Ki

(
S∗
i �Ai

(
S∗
i

)
�P∗)� (6)

2. (Consumer Maximization) The consumption vector C∗ maximizes (1) subject to (2)
given prices P∗, where Λ∗

i is determined by equation (5).
3. (Cost Minimization) For each i = 1�2� � � � � n, factor demands L∗

i and X∗
i are a solu-

tion to (3), and the technology choice S∗
i is a solution to (4) given the price vector P∗.

4. (Market Clearing) For each i= 1�2� � � � � n,

C∗
i +

n∑
j=1

X∗
ji =

(
1 − (1 − λi) μi

1 +μi
)
Y ∗
i �

Y ∗
i = Fi

(
S∗
i �A

∗
i

(
S∗
i

)
�L∗

i �X
∗
i

)
and

n∑
j=1

L∗
j = 1� (7)
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ENDOGENOUS PRODUCTION NETWORKS 41

The first condition imposes the major implication of contestability—price is equal to
marginal cost (inclusive of distortions)—while the last three conditions are standard.

Several observations are useful. First, as already noted above, when μi = 0 for all indus-
tries, our economy is fully competitive. Second, ours can be viewed as a generalization of
Samuelson’s (1951) “no-substitution economy” (to an environment with endogenous pro-
duction networks and distortions) where prices are determined entirely on the production
side, without reference to consumer preferences, as condition (6) in Definition 1 makes
clear.14 This property is a consequence of the contestable market structure we have as-
sumed. Third, the market clearing condition for industry i incorporates the fact that only
a λi fraction of revenues μi

1+μi PiYi from distortions are rebated back to the representative
household, and therefore (1 −λi) μi

1+μi units of output are lost due to frictions. Fourth, the
labor market clearing condition could have been dropped by Walras’s law, but we wrote
it as part of market clearing for emphasis. Finally, the vector of equilibrium technology
choices S∗ describes a network—the equilibrium production network—since it specifies
the set of suppliers (technologies used) for each industry.

2.4. Cobb–Douglas Production Functions With Hicks-Neutral Technology

The simplest example of production technologies that satisfy part 1 of Assumption 1
is the family of Cobb–Douglas production functions with Hicks-neutral technology, given
by

Fi
(
Si�Ai(Si)�Li�Xi

) = 1(
1 −

∑
j∈Si
αij

)1−∑
j∈Si αij ∏

j∈Si
α
αij
ij

Ai(Si)L
1−∑

j∈Si αij
i

∏
j∈Si
X
αij
ij �

For each i = 1�2� � � � � n, Ai(Si) is a scalar representing Hicks-neutral productivity, and
Si indexes the dependence of the technology on both Ai(Si) and the αij ’s.15 We show in
Lemma B1 in Appendix B of the Supplemental Material (Acemoglu and Azar (2020))
that the corresponding unit cost function for industry i is

Ki

(
Si�Ai(Si)�Pi

) = 1
Ai(Si)

∏
j∈Si
P
αij
j � (8)

This cost function illustrates the tradeoff that a firm faces when it chooses the set Si
to minimize costs. There might be sets where

∏
j∈Si P

αij
j is low, but Ai(Si) is high, and

sets where
∏

j∈Si P
αij
j is high, but Ai(Si) is low. The firm will choose a set of suppliers by

balancing this tradeoff between high productivity and low prices (or vice versa).

14This is straightforward to see when μi = 0 for all industries, but is true more generally, as we show next.
Note also that Samuelson’s notion of equilibrium is similar to ours, but imposes an additional condition

requiring that the level of consumption of the first good is maximized given the level of consumption of the
remaining goods in the economy. Our analysis in the next section shows that Samuelson’s additional condition
is redundant because the equilibrium price vector is always unique.

15The “entropy” -like denominator is included in this production function as a normalization, in particular to
simplify the unit cost function derived next. Whether this normalization is present or not makes no difference
in our static model. It is not important in the dynamic model either, since it grows at a linear (subexponential)
rate as n→ ∞ and thus does not affect the asymptotic growth rate of the economy.
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42 D. ACEMOGLU AND P. D. AZAR

Cobb–Douglas production functions enable us to obtain a closed-form solution for
equilibrium prices. Let us denote logs with lower case; that is, pi = logPi and ai = logAi.
We can then write the log unit cost as a function of log productivities and log prices,

ki
(
Si� ai(Si)�p

) = −ai(Si)+
∑
j∈Si
αijpj�

Using (6), equilibrium log prices are

p∗
i = log(1 +μi)+

∑
j∈Si

(
αijp

∗
j

) − ai� (9)

Equation (9) admits a closed-form solution for prices. Let α(S) ∈ R
n×n be a matrix with

αij(S)=
{
αij if j ∈ Si�
0 otherwise�

Then, given equilibrium technology choices represented by S∗, log prices satisfy

p∗ = −(
I − α(

S∗))−1(
a
(
S∗) − log(1 +μ))

= −L
(
S∗)(a(S∗) −m)

� (10)

where a(S∗)= (a1(S
∗)� � � � � an(S∗))′ is the column vector of equilibrium log productivities,

m = (log(1 + μ1)� � � � � log(1 + μt))
′ is the vector of log distortions, and the second line

defines the Leontief inverse,

L
(
S∗) = (

I − α(
S∗))−1

�

which will play an important role whenever we work with Cobb–Douglas production func-
tions. Equation (10) verifies, in the special case of Cobb–Douglas technology, our previ-
ous claim that prices are determined without reference to preferences.

3. EQUILIBRIUM CHARACTERIZATION

In this section, we first establish the existence of an equilibrium in our static economy
and then prove that this equilibrium is generically unique, and finally study its efficiency
properties. Existence and uniqueness of equilibrium are challenging because each indus-
try has a high-dimensional “nonconvex” technology choice. Nevertheless, we can establish
both properties using lattice theoretic ideas and exploiting the fact that the equilibrium
will feature a form of monotonicity whereby equilibrium prices of all industries always
decline with the adoption of additional (cost-minimizing) technologies by any industry.

3.1. Existence of Equilibrium

We start with a lemma that will be useful in proving both existence and uniqueness of
equilibrium. The proof of this lemma, like all other proofs (unless otherwise indicated),
is presented in Appendix A.

LEMMA 1: Suppose Assumptions 1 and 2 hold. Then, given an exogenous network Si�P∗ >
0 is an equilibrium price vector if and only if (6) holds for each i= 1�2� � � � � n.
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ENDOGENOUS PRODUCTION NETWORKS 43

The “only if” part of this lemma is a direct implication of the definition of an equilib-
rium, while the “if” part is more substantive and shows that with exogenous networks, any
vector of prices equal to unit costs is part of an equilibrium. An important implication of
this lemma, which is proven as part of its proof, is that, given an equilibrium vector of
prices, P∗, there is a unique vector of sectoral outputs, Y ∗, consumption levels, C∗, in-
termediate input levels, X∗, and labor demands, L∗. Using this result, we establish the
existence of an equilibrium.

THEOREM 1—Existence: Suppose Assumptions 1 and 2 hold. Then an equilibrium
(P∗� S∗�C∗�L∗�X∗�Y ∗) exists.

3.2. Uniqueness of Equilibrium

In this subsection, we prove the uniqueness of equilibrium prices and generic unique-
ness of equilibrium technology choices. To establish genericity, we need to consider varia-
tions in exogenous parameters. Given the uniqueness of equilibrium prices, it is sufficient
to focus on a subset of the exogenous parameters corresponding to the shifters of the
production technology, {Ai(Si)}ni=1. Let us take each Ai(Si) to be represented by an �-
dimensional vector, so thatAi = (Ai(∅)�Ai({1})� � � � �Ai({1� � � � � n}))ni=1 is also a vector in
R
�×2n−1 , and A = (A1� � � � �An) is a vector in R

n×�×2n−1 . We define generic uniqueness in
terms of the Lebesgue measure on the parameters A ∈ R

n×�×2n−1 .

DEFINITION 2—Genericity: The equilibrium network is generically unique if the set

A= {
A : There exist at least two distinct equilibrium networks S∗� S∗∗}

has Lebesgue measure zero in R
n×�×2n−1 .

THEOREM 2—Uniqueness: Suppose Assumptions 1 and 2 hold. Then the equilibrium
price vector P∗ is uniquely determined, and the equilibrium network S∗ and quantities C∗, L∗,
X∗, and Y ∗ are generically unique.

We demonstrate as part of the proof of Theorem 1 that the set of equilibrium prices
forms a lattice, which implies that for any two distinct vectors of equilibrium prices, there
exists a minimal vector of equilibrium prices. We then show that this is not possible, es-
tablishing uniqueness of equilibrium prices and thus quantities. Non-uniqueness of the
equilibrium network can only arise if two choices of input combinations yield exactly the
same unit cost for an industry, which is a non-generic possibility, proving the generic
uniqueness of the equilibrium network and equilibrium quantities.

3.3. Efficiency

The next theorem characterizes the efficiency properties of our equilibrium. To simplify
this result, we impose differentiability for production technologies as well (differentiabil-
ity of utility was imposed in Assumption 2). We say that (∅� � � � �∅) is a Pareto efficient
production network if the Pareto efficient allocation involves no input–output linkages
between industries.16

16Clearly, since the economy is inhabited by a representative household, Pareto efficiency is equivalent to
the maximization of the representative household’s utility.
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44 D. ACEMOGLU AND P. D. AZAR

THEOREM 3—Efficiency: Suppose Assumptions 1 and 2 hold. Suppose also that the pro-
duction function Fi is differentiable for each i= 1�2� � � � � n.

1. If μi = 0 for all i= 1�2� � � � � n so that all distortions are equal to zero, then the equilib-
rium is Pareto efficient.

2. If μi = μ0 > 0 and λi = 1 for all i = 1�2� � � � � n and (∅� � � � �∅) is the unique Pareto
efficient production network, then the equilibrium is Pareto efficient.

3. If μi = μ0 > 0 and λi = 1 for all i= 1�2� � � � � n and (∅� � � � �∅) is not a Pareto efficient
production network, then the equilibrium is not Pareto efficient.

4. If there exist i and i′ such that μi > 0 and μi �= μi′ or there exists i such that (1−λi)μi >
0, then the equilibrium is not Pareto efficient.

The first part of this theorem proves that when the equilibrium is competitive (with zero
distortions), it is also Pareto efficient.17 The second part shows that if the (Pareto) efficient
production network involves no input–output linkages and all distortions are equal and
rebated fully to the representative household, then the equilibrium is again efficient. This
is because relative consumption levels are not distorted, and given the inelastic supply of
labor, the economy with equal distortions replicates the allocation with zero distortions.
The third and fourth parts show that excepting these cases, the equilibrium is inefficient.
In the third part, we again focus on the case with constant distortions, but now the effi-
cient production network involves linkages. In this case, the inefficiency is a consequence
of the impact of distortions on the choice between labor and non-labor inputs. Finally, in
the fourth part, the inefficiency applies regardless of whether or not the efficient produc-
tion network is empty because distortions are unequal across sectors and distort relative
consumption choices, or because distortions generate waste.

It is also worth noting that distortions generate additional inefficiencies via their impact
on the equilibrium production network. The next example illustrates this point, focusing
on an economy with constant distortions across sectors.

EXAMPLE 1—Distortions and Inefficient Technology Choice: Consider an economy
with two industries. The representative household’s utility function is U(C1�C2) =
log(C1)+ log(C2). Each industry has a Cobb–Douglas production function with parame-
ters α12 = α21 = 1

2 . Moreover, to simplify the example, we assume that industries cannot
use their own output as input. Distortions are constant and set to μ1 = μ2 = μ0 > 0, and
we also assume λ1 = λ2 = 1. Suppose a1(∅)= a2(∅) = 0, a1({2})= a2({1}) = 1. Then log
prices are given by

p1 = log(1 +μ0)− a1(S1)+ I2∈S1

1
2
p2�

p2 = log(1 +μ0)− a2(S2)+ I1∈S2

1
2
p1�

where Ij∈Si is an indicator function for j belonging to Si.
If log(1 + μ0) < 2, then the unique equilibrium involves S1 = {2} and S2 = {1}. In this

case, p1 = p2 = 2(log(1 + μ0) − 1) and log unit costs are k1 = k2 = −2 + log(1 + μ0).
Now if a firm in either industry deviates and chooses Si = ∅, then its log unit costs would
be 0, which would increase its costs since log(1 + μ0) < 2. Substituting these prices and

17Note that even in this case, we could not establish the existence of equilibrium by appealing to the Second
Welfare Theorem because the choice over sets of inputs makes ours a nonconvex economy.
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ENDOGENOUS PRODUCTION NETWORKS 45

resulting revenues from distortions into the representative household’s budget constraint,
equilibrium consumption levels are C1 = C2 = 1

2
e2

1+μ0
> 1

2 .
However, if distortions are higher, in particular, log(1 + μ0) > 2, then the unique

equilibrium involves S1 = S2 = ∅, p1 = p2 = log(1 + μ0), and k1 = k2 = 0. Now a de-
viation to adopting the input of the other industry would lead to a log unit cost of
−2 + log(1 + μ0) > 0 since, in this case, log(1 + μ0) > 2. Equilibrium consumption lev-
els can then be computed as C1 = C2 = 1

2 . This verifies that the equilibrium now has a
lower GDP and lower welfare for the representative household because distortions have
impacted the equilibrium production network as well.

4. COMPARATIVE STATICS

In this section, we present our main comparative statics results. We first establish that
when any industry’s technology improves or distortions decline, all prices (weakly) de-
crease. We next prove that if cost functions satisfy a simple single-crossing condition, then
an improvement in technology will make the equilibrium network (weakly) expand. We
then show that this single-crossing condition is satisfied when (1) production functions
are supermodular; (2) production functions are Cobb–Douglas with Hicks-neutral tech-
nologies; or (3) they have a constant elasticity of substitution (CES) with input–specific
productivity terms. We also show that, because of the endogeneity of input choices, com-
parative statics can be “discontinuous,” in the sense that small changes in parameters or
distortions can lead to large changes in GDP and/or the equilibrium production network.

We should note at the outset that all of our comparative statics work through two com-
plementary channels. The first is a direct effect; say Ai(Si) increases, then because it has
access to better technology, industry i reduces its unit cost. The second is an indirect effect,
generated because industry i’s technology improvements are transmitted to other indus-
tries via price changes. If industry i’s price is lower, its customers will have lower unit
costs, and then their customers will have lower unit costs as well and so on. Furthermore,
because the production network is endogenous, when industry i’s price decreases, other
industries are more likely to adopt it as a supplier, decreasing their own costs, which in
turn makes them more likely to be adopted as suppliers to other industries.

4.1. Comparative Statics for Prices

We first show that any improvement in technologies or reduction in distortions—in
the sense of a shift in the vector of technologies from A to A′ ≥ A or in the vector of
distortions from μ to μ′ ≤ μ—leads to lower prices for all products.

THEOREM 4—Comparative Statics of Prices: Suppose Assumptions 1 and 2 hold. Con-
sider a shift in technology fromA toA′ ≥A and/or a decline in distortions from μ to μ′ ≤ μ,
and let P∗ and P∗∗ be the respective equilibrium price vectors. Then P∗∗ ≤ P∗.

Intuitively, an improvement in technology (or reduction in distortions) reduces the
costs and thus the prices of affected industries. But since the outputs of these industries
are used as inputs for the production of other goods in the economy, the prices of all
goods (weakly) decline as a result. Notably, no further assumptions are necessary for this
result.
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46 D. ACEMOGLU AND P. D. AZAR

4.2. Comparative Statics for Technology Choices

In contrast to prices, the comparative statics for technology choices (equilibrium net-
work) need additional assumptions. This is for two reasons. First, to encourage (or not to
discourage) the adoption of an additional product j as an input for industry i, we need
the “marginal return to adopting j” to increase, but an improvement in the technology
for industry i (A′ ≥A as in Theorem 4) does not ensure this. Second, we need to rule out
the possibility that the reduction in prices following from the adoption of an additional in-
put by an industry discourages the adoption of additional inputs. The next two definitions
introduce the conditions we need to ensure these two features.

The first one defines a positive technology shock, which embeds the notion that a shift in
technology improves not only the level of productivity of different input combinations but
also the marginal return from adopting additional input combinations. It also imposes a
quasi-submodularity condition, which implies that additional inputs do not directly reduce
the productivity from the adoption of yet further inputs. We define the last requirement
directly using the unit cost function—rather than the production functions—for conve-
nience.

DEFINITION 3—Positive Technology Shock: A change from A to A′ is a positive tech-
nology shock if

1. (higher level) A′ ≥A;
2. (quasi-submodularity) for each i= 1�2� � � � � n and for all P ,Ki(Si�Ai(Si)�P) is quasi-

submodular in (Si�Ai(Si)).18

The quasi-submodularity condition implies that when A increases to A′, there are
higher marginal returns to adopting a larger set of technologies, as we show in the next
lemma.

LEMMA 2: Suppose that for each i= 1�2� � � � � n, Ki(Si�Ai(Si)�P) is quasi-supermodular
in (Si�Ai(Si)). Then, for each i= 1�2� � � � � n and for all P and for all Si ⊂ S′

i, we have

Ki

(
S′
i�Ai

(
S′
i

)
�P

) −Ki

(
Si�Ai(Si)�P

) ≤ 0

=⇒ Ki

(
S′
i�A

′
i

(
S′
i

)
�P

) −Ki

(
Si�A

′
i(Si)�P

) ≤ 0�

Quasi-submodularity ensures that, holding prices constant, an improvement in technol-
ogy from A to A′ encourages the adoption of a larger set of inputs. But as highlighted in
Theorem 4, an improvement in technology also leads to lower prices. The next definition
introduces the requirement that the return to additional technology adoption does not
diminish as prices decline. This is a reasonable restriction (since lower prices mean that
the cost of buying inputs associated with the new technology is also lower), even though it
is by no means automatic. We show later in this section that several common production
functions satisfy this restriction.

DEFINITION 4—Technology-Price Single-Crossing Condition: For each i= 1�2� � � � � n,
the unit cost function Ki(Si�Ai(Si)�P) satisfies the technology-price single-crossing condi-
tion in the sense that for all sets of inputs Si, S′

i with Si ⊂ S′
i and all prices vectors P ′, P

18Or more explicitly, for every Si , Ti , Ai , P , we have Ki(Si�Ai(Si)�P) ≤ Ki(Si ∩ Ti�Ai(Si ∩ Ti)�P) =⇒
Ki(Si ∪ Ti�Ai(Si ∪ Ti)�P)≤Ki(Ti�Ai(Ti)�P) and Ki(Si�Ai(Si)�P) < Ki(Si ∩ Ti�Ai(Si ∩ Ti)�P) =⇒ Ki(Si ∪
Ti�Ai(Si ∪ Ti)�P) <Ki(Ti�Ai(Ti)�P).
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ENDOGENOUS PRODUCTION NETWORKS 47

with P ′
−i ≤ P−i, we have

Ki

(
S′
i�Ai

(
S′
i

)
�P

) −Ki

(
Si�Ai(Si)�P

) ≤ 0

=⇒ Ki

(
S′
i�Ai

(
S′
i

)
�P ′) −Ki

(
Si�Ai(Si)�P

′) ≤ 0�

Note that in contrast to the quasi-submodularity condition, this single-crossing condi-
tion is a joint restriction on how the unit cost function changes when both the set of inputs
and prices are modified.

The next theorem is our main comparative static result and proves that under the
technology-price single-crossing condition, a positive technology shock or a reduction in
distortions encourages technology adoption by all industries.

THEOREM 5—Comparative Statics of the Production Network: Suppose Assumptions 1
and 2 and the technology-price single-crossing condition hold. Then a positive technology
shock or a decrease in distortions (weakly) increases the equilibrium network from S∗ to S∗∗.

By definition, a positive technology shock creates direct incentives for the adoption of
additional inputs. This implies that, all else equal, “affected” industries (weakly) increase
their sets of suppliers. This then generates a series of indirect effects, because the use
of better technology reduces their prices. The technology-price single-crossing condition
implies that, facing lower prices, other industries will also be induced to (weakly) expand
their sets of suppliers. The logic for the effects of distortions is similar: lower distortions
reduce prices, and under the technology-price single-crossing condition, this encourages
an expansion of the set of suppliers for other industries.

The technology-price single-crossing condition is not always satisfied, as we show in
Example B1 in Appendix B. Nevertheless, it is satisfied for several common families of
production technologies. The proofs of the next three propositions are provided in Ap-
pendix B.

PROPOSITION 1: Suppose Fi(Li�Xi�Ai(Si)� Si) is supermodular in all its arguments. Then
the unit cost function Ki(Si�Ai(Si)�P) satisfies the technology-price single-crossing condi-
tion.

Even more important in many applications with input–output linkages is the family
of Cobb–Douglas production functions. The next proposition shows that Cobb–Douglas
production functions with Hicks-neutral technology satisfy the technology-price single-
crossing condition.

PROPOSITION 2: Suppose Fi(Si�Ai(Si)�Li�Xi) is in the Hicks-neutral Cobb–Douglas
family. Then the unit cost function Ki(Si�Ai(Si)�P) satisfies the technology-price single-
crossing condition.

The previous two propositions established the technology-price single-crossing condi-
tion when the productivity of an industry, and thus its unit cost function, depends on the
set of inputs, Si. Our next example is more restrictive in this regard in that we consider
“input-specific” productivities, meaning that each input has a specific productivity (for
the sector in question) which applies regardless of which other inputs are being used. We
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48 D. ACEMOGLU AND P. D. AZAR

then show that when production functions are CES with input-specific productivities, the
single-crossing property is again satisfied.19

PROPOSITION 3: Suppose Fi(Si�Ai(Si)�Li�Xi) is a CES function with input-specific pro-
ductivities, that is, (∑

j∈Si
αij(AijXij)

σ−1
σ +

(
1 −

∑
j∈Si
αij

)
L

σ−1
σ
i

) σ
σ−1

(11)

with σ �= 1. Then the unit cost functionKi(Si�Ai(Si)�P) satisfies the technology-price single-
crossing condition.

4.3. Discontinuous Effects

One novel feature of our economy is that, because of the changes in the production
network, small changes in technology or parameters can lead to discontinuous effects.
In this subsection, we first illustrate the possibility of discontinuous changes in GDP and
then show how there can also be discontinuous network effects in the sense that small
changes in productivity lead to a large change in the equilibrium production network.
These examples further illustrate that while these discontinuous responses partly reflect
the discreteness of the choices over the set of suppliers in our model, they are crucially a
consequence of the interdependent nature of technology adoption decisions—the adop-
tion of a productive technology reduces an industry’s unit cost of production and makes
it more attractive as an input supplier to other industries.

EXAMPLE 2—Discontinuous GDP: Consider an economy with two industries, both of
which have Cobb–Douglas production functions, with respective parameters α12 = α21 =
1
2 , and assume that industries cannot use their own output as input. The representative
household has a utility function U(C1�C2)= log(C1)+ log(C2). Suppose μ1 = μ2 = μ0 >
0, λ1 = λ2 = 1, a1(∅) = a2(∅) = ε > 0, a1({2}) = a2({1}) = 1

2 log(1 + μ0). Therefore, log
prices satisfy

p1 = log(1 +μ0)− ai(Si)+ I2∈S1

1
2
p2�

p2 = log(1 +μ0)− ai(Si)+ I1∈S2

1
2
p1�

The unique equilibrium then involves S1 = S2 = ∅ and p1 = p2 = log(1+μ0)−ε. To see
this, note that marginal costs for both industries are −ε. If a firm in industry 1 deviates and
chooses S1 = {2}, then its log marginal cost would be − 1

2ε >−ε. Analogously, a deviation
to S2 = {1} in industry 2 will also raise costs. In this equilibrium, industry i’s revenues
from distortions are μ0

1+μ0
PiCi and equilibrium consumption levels are CI

1 = CI
2 = eε

2 . Thus,
as ε→ 0+, CI

1 = CI
2 → 1

2 .
Now consider a change in technology to a1({2}) = a2({1}) = 1

2 log(1 + μ0) + ε. For ε
small, this is a small change in technology. Following this change in technology, the unique

19Note that labor is not essential for CES production functions with σ > 1, and in this case, conditions other
than the second part of Assumption 1 would have to be imposed to guarantee the existence of an equilibrium.

 14680262, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
15899 by T

est, W
iley O

nline L
ibrary on [08/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENDOGENOUS PRODUCTION NETWORKS 49

equilibrium changes to S1 = {2} and S2 = {1}, and p1 = p2 = log(1 + μ0) − 2ε. Now in-
dustry i’s revenues from distortions are Λi = μ0

1+μ0
Pi(Ci + X−i�i) where X−i�i is industry

−i’s use of industry i’s inputs, and equilibrium consumption levels can be computed as
CII

1 = CII
2 = e2ε

2 + μ0X12 = e2ε

2 (1 + μ0) >
eε

2 . As ε→ 0+, CII
1 = CII

2 → 1
2 + μ0

2 >
1
2 , and so

consumption levels and GDP change discontinuously following an infinitesimal change
in ε.

This example shows how an infinitesimal change in productivity can have a first-order
impact on GDP when the equilibrium production network changes in response and there
are distortions (or markups). Intuitively, an industry can add new suppliers following an
increase in productivity. Since it was previously minimizing its costs, this change can only
have a small impact on its profits. But when the industry adds a new supplier, its purchases
from this new supplier go from zero to a positive amount. Because, in the presence of dis-
tortions/markups, prices are not equal to marginal cost, this change can have a nontrivial
impact on the supplier’s profits, which are partially rebated to the representative house-
hold. Underscoring the central role of the endogeneity of the production network in this
result, we show in Theorem B2 in Appendix B that when the production network is ex-
ogenous, there are no discontinuous effects on GDP, with or without distortions.

In Appendix D, we illustrate this discontinuous effect for an economy calibrated to the
2007 U.S. input–output data (for 391 sectors) with distortions at the two-digit level given
by De Loecker, Eeckhout, and Unger’s (2018) markup estimates.20 We then consider a
1% increase in the TFP of the detailed industries in the two-digit computer and elec-
tronic product manufacturing sector (NAICS sector 334, which accounts for just 1�98%
of GDP). Because the increase in the productivity of these industries makes them more
likely to be adopted as inputs to other industries, we find that the equilibrium produc-
tion network changes significantly (288 new edges are added to the input–output matrix)
and real GDP increases by 0�72%. Of this increase, 0�13 percentage points are accounted
for by the rise in value added in computer and electronic product manufacturing and the
remaining 0�59 percentage points come from the induced expansion of other sectors.

We then repeat the same exercise for two economies, one with Cobb–Douglas and the
other with CES sectoral production functions, calibrated to the same U.S. data, but at the
level of 84 three-digit industries. More importantly, for these more aggregated economies,
we do not allow any extensive margin changes in the production network. So with Cobb–
Douglas technologies, the input–output matrix remains unchanged, while with CES tech-
nologies, the entries in the input–output matrix change following changes in prices, but
no new links are added to it. We find that the same 1% TFP increase in computer and
electronic product manufacturing leads to a 0�04% increase in GDP with Cobb–Douglas
technologies.21 With CES technologies, it leads to a 0�01% increase in GDP when the elas-
ticity of substitution is σ = 2, and a 0�09% increase in GDP when σ = 1

2 . This illustrates

20For this exercise, we exclude from the 2007 input–output tables the government sector as well as two
sectors with zero labor income, privately-owned residential property and the sector made up of custom duties.
Throughout, GDP refers to U.S. GDP after these sectors are excluded (the sum of the value added of the
remaining sectors).

21Because of markups, the magnitudes of the effects for the aggregated economies (without extensive mar-
gin change in the input–output matrix) are a little larger than the impact implied by Hulten’s theorem for an
economy without distortions (Hulten (1978)). In particular, the Domar weight of the computer and electronic
product manufacturing sector is 2�68%, so Hulten’s theorem implies that, without distortions/markups, a 1%
increase in TFP should have increased GDP by about 0�01 × 2�68% ≈ 0�03%, compared to the 0�04% increase
we find in the aggregated Cobb–Douglas economy.
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50 D. ACEMOGLU AND P. D. AZAR

FIGURE 2.—Evolution of the input–output network in Example 3. This figure shows how the input–output
network in Example 3 changes after a shock to industry 1’s productivity. Immediately after the shock, industry
1 will adopt all other industries as suppliers. This leads to a drop in industry 1’s price. This drop in price is
large enough that all other industries adopt industry 1 as a supplier. This leads to a cascade effect of declining
prices, until all industries adopt each other as suppliers.

both the potentially discontinuous impact of shocks in the presence of an endogenous
production network and the fact that behavior in an economy with endogenous input–
output linkages cannot generally be replicated with a more aggregated economy without
endogenous linkages.

The next example shows that it is not just GDP but the equilibrium production network
that can respond discontinuously to a small change in technology or parameters (see Fig-
ure 2).

EXAMPLE 3—Discontinuous Network Effects: Consider an economy with n industries.
Each industry has a Hicks-neutral Cobb–Douglas production function. Given a log price
vector p, each industry i chooses a set of suppliers Si which minimizes the log unit cost
function ki(Si� ai(Si)�p) = −ai(Si) + ∑

j∈Si αijpj . The economy’s initial log productivity
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ENDOGENOUS PRODUCTION NETWORKS 51

function is ai(∅)= 0 and ai(Si)= −ε for all i and all Si �= ∅, where ε > 0 can be taken to be
arbitrarily small. To simplify the example, we set distortions equal to zero,μi = 0 for all i=
1�2� � � � � n and assume that own output cannot be used as input. It is then straightforward
to verify that the unique equilibrium network is empty, that is, (S1� � � � � Sn)= (∅� � � � �∅),
and the equilibrium log price vector is p= 0.

Consider next a change in technology increasing industry 1’s log productivity to
a′

1({1� � � � � n} \ {1}) = κε, and a′
1(S1) = a1(S1) for all S1 �= {1� � � � � n} \ {1}. (There is no

change for other industries, a′
i(Si)= ai(Si) for all i �= 1 and all Si.) We take κ >maxi �=1

1
αi1

.
The following tatonnement process converges to a new equilibrium, represented by a net-
work S′ and log prices p′ = −(I − α(S′))a(S′).

In round 0 of the tatonnement process, we take the initial price vector p= 0 as given
and allow each industry to minimize costs using their new technology a′. Therefore, in this
round, all industries except industry 1 choose Si = ∅, while industry 1 sets S1 = {1� � � � � n} \
{1} and achieves log unit cost of minS1 k(S1� a

′
1(S1)�p) = −a1(S1) = −κε. Consequently,

at the end of round 0, the network is S0 = ({1� � � � � n} − {1}�∅� � � � �∅) and the log price
vector is p0 = (−κε�0� � � � �0).

In round 1, we now impose the log price vector of p0, which resulted from round 0. Now
industry 1 still chooses S1 = {1� � � � � n} \ {1}. All other industries will choose industry 1 as
a supplier since ε − αi1κε < 0 (which follows since we have assumed that κ > maxi 1

αi1
).

Thus, at the end of round 1, we have S1 = ({1� � � � � n} \ {1}� {1}� � � � � {1}) and a log price
vector of p1 such that p1

i < 0 for all i.
In round 2 of the tatonnement process, we take the log price vector to be p1, all of

whose elements are negative. This ensures that for each industry i, the cost-minimizing
set of suppliers is now Si = {1� � � � � n}, leading to a vector of log prices of p2 ≤ p1 < 0.

In round t ≥ 3, the network of technologies has converged, that is, S′ = S3 = S2, and
only prices are updated with

pti = −ai
(
S′
i

) +
∑
j∈S′

i

αijp
t−1
j �

This process converges to p′. Thus, in this example, a small change in productivity shifts
the equilibrium technology choices from the empty to the complete network.

5. GROWTH WITH ENDOGENOUS PRODUCTION NETWORKS

We now extend our baseline model to a dynamic framework and show how our ap-
proach isolates a new economic force—productivity growth from new input combina-
tions—that can generate sustained economic growth. For this purpose, we start with the
special case of our baseline model with Hicks-neutral Cobb–Douglas functions. The key
economic force propagating sustained growth can be understood as follows: If there are
t products in the economy, then each industry i has access to t − 1 possible suppliers and
2t−1 ways of combining these suppliers. Even with a trickle of new products, there is thus
a significant expansion of the set of inputs available to each industry and selecting the
most beneficial combination to achieve a high Ai(Si) and/or low prices for inputs j ∈ Si
can generate significant cost reductions.

In the baseline version of our dynamic model, one new industry arrives in each period,
and all firms have the option of updating their technology by combining the new industry’s
product with any other subset of products. We ensure that growth is not driven because
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52 D. ACEMOGLU AND P. D. AZAR

of expanding product variety by imposing that new products have limited benefits to con-
sumers. But they may significantly reduce the production cost of existing products due to
a selection effect—each industry can now choose its production technology from the expo-
nentially greater number of options made possible by the arrival of one more input. We
then show that this selection effect can generate sustained growth.

After establishing this result, we show that it generalizes to an economy with non-Cobb–
Douglas production functions, to an environment in which there are various constraints
on technology choices, to a setting in which the arrival of new products may be faster or
slower than our benchmark, and to an economy in which new products emerge from new
input combinations. In the final subsection, we consider a more substantive generaliza-
tion where new products replace some of the old ones as either inputs or in consump-
tion.

5.1. Model

There are countably infinite time periods indexed by t ∈ {1�2�3� � � �}. At each time t, a
new product arrives. Products are indexed by the time at which they arrive, so that the
product arriving at time t is referred to as product t. We index all endogenous variables
with time, for example writing Pi(t) for the equilibrium price of product i at time t. Anal-
ogously, we denote the values of Li, Yi, Xij , Ci, and Si at time t by Li(t), Yi(t), Xij(t),
Ci(t), and Si(t). The equilibrium wage rate at each t is set as the numeraire, that is,

W (t)= 1 for all t�

Production Technology

At time t, each industry i ∈ {1� � � � � t} has access to a collection of production technolo-
gies indexed by the set of suppliers Si(t) ⊂ {1� � � � � t}. Instead of Assumption 1, we now
impose the following:

ASSUMPTION 1′: Production functions are in the Cobb–Douglas family with Hicks-neutral
technologies. That is, for industry i at time t, we have

Yi(t)= Ai

(
Si(t)

)(
1 −

∑
j∈Si(t)

αij

)1−∑
j∈Si(t) αij ∏

j∈Si(t)
α
αij
ij

Li(t)
1−∑

j∈Si(t) αij
∏
j∈Si(t)

(
Xij(t)

)αij �

As in our baseline model, adopting (or dropping) new suppliers is costless. This implies
that at each point in time, regardless of the way that the households trade off current and
future consumption, firms will adopt the cost-minimizing combination of inputs.

We continue to assume the same contestable market structure with distortions as in our
static model, and also suppose that distortions are constant over time and we continue to
denote them by the vector μ. We also rule out the possibility that the distortions for new
goods are unbounded. That is, the following holds:

ASSUMPTION 3: There exists μ0 <∞ such that sup{μt}∞
t=1 ≤ μ0.
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ENDOGENOUS PRODUCTION NETWORKS 53

Preferences

On the preference side, we replace Assumption 2 with the following:

ASSUMPTION 2′: Time-t preferences of the representative household take a Cobb–Douglas
form,

u
(
C1(t)� � � � �Ct(t)�β

) =
[

t∏
i=1

(
βi
t∑
i=1

βi

)−βi t∏
i=1

Ci(t)
βi

] 1∑t
i=1 βi

� (12)

where the vector β satisfies βt ≥ 0 for all t and
∑∞

t=1βt = 1.

The first term in square brackets is included as convenient a normalization. The overall
utility of the representative household is given by a discounted sum of its time-t prefer-
ences.

Crucially, this specification implies that limt→∞βt = 0.22 This feature highlights the rea-
son why we have adopted Cobb–Douglas preferences—to construct a simple measure
of GDP/utility (see (13) below), and to clarify that direct utility gains from the addition
of new products are minimal. Intuitively, this feature can be justified as follows: we can
imagine that the representative household’s core necessities are met by goods introduced
relatively early in the development process (e.g., hot food, clothing, and entertainment),
while goods introduced later (such as microwave ovens, automated textile technologies,
and streaming) could be useful for more efficiently meeting these necessities, but will not
directly increase consumer utility by a large amount. We discuss how this assumption can
be relaxed, allowing new goods to replace old goods, later in this section.

At time t, nominal GDP is given by YN(t)= ∑t

i=1 Pi(t)Ci(t)= 1+∑t

i=1 λi
μi

1+μi Pi(t)Yi(t)
(which includes labor income and income rebated from taxes and profits). Real GDP,
which is also equal to the representative household’s utility u(C1(t)� � � � �Ct(t)�β), is ob-
tained by deflating nominal GDP by the ideal price index derived from the representative
household’s utility maximization problem.23 Specifically, real GDP is

Y(t)= YN(t)
t∏
i=1

Pi(t)
βi∑t
i=1 βj

� (13)

We define the asymptotic growth rate of real GDP as24

g∗ = lim
t→∞

(
logY(t)

t

)
�

22In fact, we can set βt = 0 for all t after some T ∗ <∞ with no change in any of our results.
23Utility-maximizing consumption levels for the representative household are C∗

i (t) = βi∑t
i=1 βi

YN (t)
Pi(t)

. Sub-

stituting these into (12), we obtain U(C∗
1 (t)� � � � �C

∗
t (t)�β) = [∏t

i=1(
βi∑t
i=1 βi

)−βi
∏t
i=1(

βi∑t
i=1 βi

YN (t)
Pi(t)

)βi ]
1∑t
i=1 βi =

YN(t)

∏t
i=1 Pi(t)

βi∑t
i=1 βi

.

24An alternative definition of the asymptotic growth rate would have been limt→∞�Y(t). When this limit
exists, it is straightforward to see that g∗ = limt→∞�Y(t). However, this limit may fail to exist, even though g∗

is well defined (e.g., because �Y(t) fluctuates between high and low values even asymptotically). Our definition
thus avoids these inessential complications.
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54 D. ACEMOGLU AND P. D. AZAR

The next lemma shows that, asymptotically, the growth rate of real GDP is a simple
function of changes in prices, highlighting that asymptotic growth in this economy is a
result of declines in production costs and prices.

LEMMA 3—Asymptotic Growth: The asymptotic growth rate of real GDP is

g∗ = lim
t→∞

(
−π(t)

t

)
�

where π(t)= βi∑t
i=1 βi

pi(t) is the (log) ideal price index at time t.

From (10), the (log) ideal price index can be written as

π(t)= −β(t)′L(t)a(S(t)−m(t))� (14)

where β(t)= ( βi∑t
i=1 βi

� � � � � βt∑t
i=1 βi

)′ is the vector of consumption shares at time t, a(S(t))=
(a1(S1(t))� � � � � at(St(t)))

′ is the vector of log productivity terms, L(S(t)) is the Leon-
tief inverse matrix when the input–output network is given by S(t), and m(t)= (log(1 +
μ1)� � � � � log(1 +μt))′ is the vector of log distortions.

We also impose two additional assumptions in our dynamic analysis.

ASSUMPTION 4: For a fixed t and i ∈ {1� � � � � t}, the log productivity vector ai(t) =
{ai(Si� t)}Si⊂{1�����t} is drawn from a distribution �i(t). Furthermore, there exists a constant
D> 0 such that, if {ai(t)}t∈N is a sequence of log productivity vectors for industry i, then

lim
t→∞

max
Si⊂{1�����t}

ai(Si� t)

t
=D almost surely�

Assumption 4 rules out log productivity distributions that have either too thin or too
thick tails. Note that this assumption does not require the draws of log productivities to
be identical or independent, thus allowing for both correlation between different produc-
tivity realizations and the possibility that the productivities of certain inputs in all or some
industries are higher than others. We show in Propositions B1 and B2 in Appendix B that
when the ai(Si� t)’s are independent draws from Gumbel or exponential distributions,
Assumption 4 is satisfied.25 In contrast, finite and normal distributions do not satisfy this
assumption because their tails decrease at a faster rate than exponential. This assumption
is not satisfied for the Pareto or Frechet distributions either, this time because their tails
decrease at a slower rate than exponential.

ASSUMPTION 5: 1. There exists θ < 1 such that
∑∞

j=1 αij ≤ θ for all i ∈ N.
2. Furthermore, for every ε > 0, there exists a constant T such that, for all i ∈ N,∑∞
j=T αij ≤ ε.

25In Appendix B, we also explore how different types of non-identical distributions can be parameter-
ized. We show in Proposition B3 that one tractable example that satisfies Assumption 4 is ai(Si(t)) =∑

j∈Si(t) ãj with each ãj drawn independently from {−1�1} with equal probabilities. Then Cov(ai(S)�ai(S′))=∑
j∈Si∩S′

i
Var(aj)= |Sj ∩ S′

j |. Other correlated productivity structures are described in the next section.
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ENDOGENOUS PRODUCTION NETWORKS 55

The first part of Assumption 5 imposes that the matrix norm ‖α(S(t))‖∞ =
maxi

∑
j |αij(S(t))| is uniformly bounded for all t, and implies that ‖L(S(t))‖∞ ≤∑∞

�=0 ‖α�(S(t))‖∞ ≤ 1
1−θ . This bound is a dynamic analogue of our requirement in As-

sumption 1 that labor is an essential factor of production. Without this assumption, the
share of labor in each industry could asymptote to zero. The second part of Assumption 5
states that goods invented relatively early on do not just have larger consumption shares
(as imposed in Assumption 1′), but they also make up the more important inputs in the
sense that the sum of the cost shares of inputs arriving after some time T are uniformly
bounded. This property is used in the proof of the main result of this section, Theorem 6,
and enables us to prove that the upper and lower bounds for the asymptotic growth rate
of the economy with endogenous production networks are the same; it is relaxed later in
this section.

Even though more recent goods are assumed not to make up a large fraction of input
costs, they can have important productivity consequences. The role of GPS technology
in smartphones illustrates this possibility. GPS components are not essential for smart-
phones and account for a very small fraction of costs. For example, the GPS component
for iPhone 3G, the first iPhone featuring this technology, cost $3�60 or about 2% of the
overall cost of a smartphone. But by enabling real-time location information to be used for
service delivery and tracking, GPS technology greatly increased the usefulness of smart-
phones as an input to other industries such as ridesharing, trucking, and parcel services.26

5.2. Sustained Growth

The main result of this section is that when firms can select their set of suppliers from
all available combinations, the economy will (almost surely) achieve sustained economic
growth.

THEOREM 6—Growth: Suppose that Assumptions 1′, 2′, 3, 4, and 5 hold, and let D> 0
be as defined in Assumption 4. Each industry chooses its set of suppliers S∗

i (t)⊂ {1� � � � � t}.
Then, for each i= 1�2� � � � � t, the equilibrium log price vector p∗(t) satisfies

lim
t→∞

− p∗
i (t)

t

t∑
j=1

Lij

=D> 0 almost surely�

and thus

g∗ =D
∞∑
i�j=1

βiLij > 0 almost surely�

When firms can choose their input suppliers in an unrestricted fashion, the economy
(almost surely) achieves sustained growth. The selection of inputs—the fact that out of
the many new input combination options presented to them each industry chooses the
cost-minimizing combination—is at the root of this sustained growth result. This can also
be seen from the following: if we restricted the choice of input combinations (e.g., by
allowing firms to choose at any point only between their current input combination and

26See https://www.edn.com/electronics-news/4326563/iPhone-3G-has-173-BOM-iSuppli-estimates.
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56 D. ACEMOGLU AND P. D. AZAR

a randomly chosen alternative set), there would be no sustained growth. This is shown in
Theorem B3 in Appendix B.

One useful intuition for Theorem 6 can be obtained as follows. Suppose that in-
dustries choose their input suppliers to maximize productivity (i.e., industry i chooses
Si ∈ arg maxS ai(S)); then, under Assumption 4, the productivity of each industry i, ai(S),
would have an asymptotic growth rate of D. From (14), this yields asymptotic growth at
the rate β′LD. Though simple and useful, this intuition is limited as it does not clarify
the fundamental force leading to asymptotic growth. In equilibrium, an industry does not
maximize productivity, but minimizes its costs. All the same, we show that, under Assump-
tion 5, its asymptotic costs cannot be much lower or much greater than the cost of a firm
maximizing productivity. The bulk of the proof of the theorem focuses on establishing this
step.

Theorem 6 also illustrates the direct and indirect effects that the arrival of new tech-
nologies has on prices. The direct effect is that as each industry i faces an expanded set
of possible input combinations, its cost and thus equilibrium price declines. The indirect
effect comes from the fact that, as industry i’s price declines, industries that use this in-
dustry’s output as input will also benefit because their costs will decrease. In particular,
recall that −p∗

i (t)= ∑t

j=1 Lij(S(t))(aj(Sj(t))− log(1 +μj)).
We can measure the direct effect by counterfactually setting the prices of all inter-

mediate inputs for industry i to Pj(t) = 1 (for j �= i) so that cost reductions of indus-
tries adopting new technologies do not benefit their customers. In this case, we would
have that the log price of all intermediate inputs is zero, and the log cost of produc-
ing good i becomes k∗

i (t) = −ai(Si(t)). Industry i would then choose Si to maximize
ai(Si) and consumers would face the price pi = log(1 + μi)− maxSi ai(Si). The log GDP
level would then be

∑t

i=1βi(maxS′
i
ai(S

′
i) − log(1 + μi)), capturing just the direct effect.

The indirect effect is the difference between this quantity and the (negative) price in-
dex,

∑t

i�j=1βiLij(S)(aj(Sj)− log(1 +μj)), which includes cost reductions in other sectors
working through the Leontief inverse matrix L(S).

5.3. Generalizations

In this subsection, we show how several of the assumptions used so far can be relaxed
without affecting the main conclusion about new input combinations generating sustained
growth. We start with three corollaries that generalize certain aspects of our environment
and clarify the economic forces that generate sustained growth in our model. Because
they are minor variations on the proof of Theorem 6, the proofs of these corollaries are
omitted.

The first corollary shows that it is sufficient for a subset of industries to be able to choose
their suppliers in an unconstrained manner.

COROLLARY 1: Suppose that there exists a finite, nonempty set S of industries for which
Assumptions 1′, 2′, 3, 4, and 5 hold and that can choose their sets of suppliers S∗

i (t) ⊂
{1� � � � � t}. The remaining industries cannot choose their suppliers. Then

g∗ =D
∞∑
i=1

∑
j∈S
βiLij > 0 almost surely�

Note that the growth rate has a similar expression to that in Theorem 6, but only con-
siders the sub-block of the Leontief inverse corresponding to industries in the set S , since
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ENDOGENOUS PRODUCTION NETWORKS 57

growth is driven by these industries. Though productivity grows in other industries as well
because they use the inputs in S , this growth is slower and asymptotically dominated by
the growth of the industries in S .

A restrictive feature of Theorem 6 is that only one product arrives at each point in
time. The next corollary shows that sustained growth still emerges when the number of
products existing at time t can be an arbitrary function of t.

COROLLARY 2: Suppose that Assumptions 1′, 2′, 3, and 5 hold. Suppose also that the num-
ber of existing products at time t is n(t), and a modified version of Assumption 4 holds where
the distribution �i(t) from which ai(t) are drawn satisfies limt→∞ maxS⊂{1�����n(t)}

ai(S(t))

t
=D

almost surely; then

g∗ =D
∞∑
i�j=1

βiLij > 0 almost surely�

When n(t) grows asymptotically faster (slower) than t, then the maximum productivity
term maxS⊂{1�����n(t)} ai(S)} must grow at a rate slower (faster) than t to ensure sustained
(exponential) growth.27

Finally, the next corollary relaxes both Assumption 4 and the second part of Assump-
tion 5, and shows that even though in this case we cannot be sure that there exists a con-
stant asymptotic growth rate, growth is uniformly bounded between two constant rates,
ensuring that the economy will still exhibit sustained economic growth.

COROLLARY 3: Suppose that Assumptions 1′, 2′, 3, and the first part of Assumption 5 hold.
Suppose also that a modified version of Assumption 4 holds, where lim inf maxSi⊂{1�����t}

ai(Si�t)

t
=

D1 > 0 and lim sup maxSi⊂{1�����t}
ai(Si�t)

t
=D2 > 0 almost surely. Each industry again chooses

its set of suppliers S∗
i (t)⊂ {1� � � � � t}. Then

D1

∞∑
i�j=1

βiLij ≤ g∗ ≤ D2

1 − θ
∞∑
i�j=1

βiLij almost surely�

Our next generalization in this subsection shows how the assumption of Cobb–Douglas
technologies can be relaxed. Specifically, we prove the possibility of sustained growth with
general constant returns to scale production functions and Hicks-neutral technologies.28

For this result, recall that ki is the log unit cost function of industry i and no longer takes
a Cobb–Douglas form.

THEOREM 7—Growth With General Technologies: Suppose that all production func-
tions are continuously differentiable and feature Hicks-neutral technologies in the sense that,
for each industry i = 1�2� � � � � t, there exists a continuously differentiable function ki(Si�p)
such that the log unit cost function satisfies ki(Si� ai(Si)�p) = −ai(Si) + ki(Si�p). Sup-
pose also that Assumptions 2, 3, and 4 hold, and that there exists θ < 1 such that for all

27For example, when n(t) = tk (with k > 1), the maximum productivity term needs to grow more slowly
with t. This can be achieved, for instance, if ai(Si) = bi(Si)

1
k , where the bi(Si)’s are identically and indepen-

dently distributed draws from a Gumbel distribution with parameter σ . This implies limt→∞ maxS⊂{1�����tk}
bi(S)

tk
=

σ log 2 almost surely, and thus limt→∞ maxS⊂{1�����tk}
ai(S)
t

= (σ log 2)
1
k almost surely, as required in Corollary 2.

28We explore the implications of Harrod-neutral technologies in Appendix B.
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58 D. ACEMOGLU AND P. D. AZAR

i ∈ {1� � � � � t} and all t ∈ N,
∑t

j=1
d logki
d logpj

≤ θ. Then, for each i, the equilibrium log price satis-
fies

D≤ lim inf
t

−p
∗
i (t)

t
≤ lim sup

t

−p
∗
i (t)

t
≤ D

1 − θ�

If, in addition, Assumption 2′ holds, then the equilibrium growth rate at time t, g∗(t) =
− 1

t

∑t

i=1βi(t)p
∗
i (t), satisfies

D≤ lim inf
t
g∗(t)≤ lim sup

t

g∗(t)≤ D

1 − θ�

This theorem shows that Cobb–Douglas production functions are not essential for our
main growth result. Even though we cannot be sure that the economy converges to a
constant growth rate without this assumption, as in Corollary 3 there exist lower and
upper bounds for the asymptotic growth rate that are constant and are in terms of the
same Leontief inverse expression as in Theorem 6.

Yet another important generalization relaxes the assumption that new products arrive
exogenously. Though there are many different ways in which endogenous creation of new
products can be introduced in this framework, one interesting and novel avenue is to
explore whether the combination of new inputs can lead to new products. Our assumption
so far is that as an industry adopts additional inputs, this can reduce its costs but does not
change the functionality or nature of the good being produced. In practice, new inputs
may not just reduce costs but also transform a product’s use in consumption or as an input
significantly, transforming it into a new good. For example, combining sensors, lidar, new
hardware, and advanced software into cars can create a new type of good, autonomous
vehicles. One way in which this can be modeled in our setup is as follows. Suppose that
there are no new products arriving exogenously, but existing ones can be combined with
each other to create additional products. Suppose, in particular, that when there are n(t)
goods at time t, society can generate z(n(t)) new products. Because of limits on society’s
ability to undertake such combinations at a point in time, we assume that the function z is
bounded above by z <∞ (this is similar to what Weitzman (1998) assumed in his model
of recombinant growth). This implies that asymptotically, society will generate z products
per period, and thus a slight variant of Theorem 6 applies and generates a growth rate of
g∗ = zD∑∞

i�j=1βiLij ; notably, in this case there is no exogenous arrival of new products.

5.4. Growth With Essential Inputs and When New Products Replace Old Ones

Our formulation so far imposes two assumptions that are not realistic. First, it ignores
the possibility that certain input classes may be essential for the production of some types
of goods. For example, some metals need to be used for precision tools or agricultural
products for food manufacturing. Second, it does not allow for new inputs, or new input
combinations, to replace old ones, which is an important feature of some of the examples
of new input combinations we discussed in the Introduction (e.g., electronic fuel injectors
replacing carburetors). In this subsection, we generalize our framework to accommodate
both possibilities.

We first introduce a variant of our setup in which there may exist a set of essential
inputs for each industry. Specifically, suppose that there are K <∞ categories. At each
time t, one new good in each category arrives, so the total number of goods after t time
periods is tK. The categories partition the space of goods into K sets V1(t)� � � � � VK(t) so
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ENDOGENOUS PRODUCTION NETWORKS 59

that
⋃K

k=1 Vk(t)= {1� � � � � tK}. For each industry i, there is a set Ri ⊂ {1� � � � �K} of essen-
tial categories that the industry needs to produce. Finally, each category k has its own
productivity Ai�k(Si�k) that depends on the subset Si�k ⊂ Vi�k(t) of inputs from category k.
This implies that industry i’s production function now takes the form

Yi =L
1−∑

k∈Ri
∑
j∈Si�k αij

i

K∏
k=1

Ai�k(Si�k)
∏
j∈Si�k

X
αij
ij �

where Si�k′ �= ∅ for each k′ ∈ Ri. The next result is a generalization of Theorem 6 in the
presence of such restrictions on permissible input combinations.

THEOREM 8—Growth With Essential Inputs: Suppose that Assumptions 1′, 2′, 3, and 5
hold. Suppose also that a modified version of Assumption 4 holds where

lim
t→∞

max
Si�k⊂Vk(t)

ai�k
(
Si�k(t)

)
t

=Dk > 0

almost surely for each k ∈ Ri. Then, for each i= 1�2� � � � � t, the equilibrium log price vector
p∗(t) satisfies

lim
t→∞

− p∗
i (t)

t

K∑
k=1

∑
j∈Vk(t)

LijDk

= 1> 0 almost surely�

and thus

g∗ =
∞∑
i�j=1

K∑
k=1

∑
j∈Vk

βiLijDk > 0 almost surely�

This result thus shows that various restrictions on combinations of inputs can be im-
posed without impacting our main result concerning sustained growth.

The generalization introduced in this subsection also allows us to relax some aspects
of Assumptions 2′ and 5. In particular, recall that the first of these imposes that the con-
sumption shares of new products satisfy limt→∞βt = 0, while the second implies that the
cost shares of new inputs are small. These assumptions therefore rule out a natural type
of “creative destruction” where new products replace older ones in either consumption
or production or in both. To incorporate this possibility, let us again partition the set of
goods into K categories, V1(t)� � � � � VK(t) with

⋃K

k=1 Vk(t)= {1� � � � � tK}, but now with the
crucial difference that goods in the same category are more strongly substitutable than
in Theorem 8 where at least one—and possibly many—of the goods in the same cate-
gory are used in production. Instead, we now assume that in the categories k=K′� � � � �K
(where K′ > 1), the production process uses only one good as input from the same cate-
gory, while in the firstK′ categories there are no such restrictions. This implies that goods
in categories VK′(t)� � � � � VK(t) are competing against each other in consumption or in the
supply chain of an industry, and when a new one is introduced, it replaces the previously
used good from that category. We continue to impose Assumptions 2′ and 5 to the first
K′ categories. This, in particular, implies that for k= 1� � � � �K′, limj�t→∞�j∈Vk(t) βj = 0 and∑

j�t≥T�j∈Vk(t) αij ≤ ε for all i. But these assumptions are now relaxed for the remaining
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60 D. ACEMOGLU AND P. D. AZAR

K −K′ categories. Instead, for those categories, we have the following: for any j ∈ Vk(t)
with k ≥ K′, βt = βk and

∑
k>1�j∈Vk(t) αij ≤ θ < θ (where θ < 1 as specified in Assump-

tion 5). The second part of this assumption implies that the cost share of new inputs can
be large (because they are replacing other inputs that, on average, have large cost shares).
Intuitively, this structure will ensure that there are new combinations of inputs in the first
K′ categories, while the new inputs introduced in the remaining categories generate a
type of creative destruction, with new inputs or consumption goods replacing old ones.
Under these assumptions, we can establish the following theorem.29

THEOREM 9—Growth With Creative Destruction: Suppose that there are K categories
of inputs V1(t)� � � � � VK(t) with

⋃K

k=1 Vk(t)= {1� � � � � tK}. Suppose that Assumptions 1′ and
3 hold, and that Assumptions 2′ and 5 hold for the first K′ categories (where K′ ≥ 1) while
for the remaining K − K′ categories, we have: for all j ∈ Vk(t) and k ≥ K′, βt = βk and∑

k>1�j∈Vk(t) αij ≤ θ < θ (where θ < 1 as specified in Assumption 5). In addition, suppose the
following version of Assumption 4 holds for k = 1� � � � �K′: limt→∞ maxSi�1⊂Vk(t)

ai�1(Si�k(t))

t
=

Dk > 0 almost surely. Then

g∗ =
∞∑
i�j=1

K′∑
k=1

∑
j∈Vk

βiLijDk > 0 almost surely�

This theorem thus establishes that sustained growth is possible in an environment in
which new inputs replace old ones (or new consumption goods replace old ones) and
can thus have significant shares in the budget of consumers or an industry’s value added
(or costs). It also implies that new input combinations may be associated with smaller
intermediate shares in value added.30 Note also that even though asymptotic growth is
driven by the first K′ categories, the introduction of new inputs replacing old ones in the
other categories also adds to productivity growth both at the industry and the aggregate
level.

6. CROSS-SECTIONAL IMPLICATIONS

In this section, we develop the cross-sectional implications of our model of endogenous
production networks. Our focus will be on a static economy with large n, which will en-
able us to draw on some of the results developed in the previous section.31 Throughout
this section, we impose Assumptions 1′ and 2′, ensuring that all production functions and
preferences are Cobb–Douglas. We also impose a variant of Assumption 4, which allows
for log productivities to be correlated draws from a Gumbel distribution. Under these as-
sumptions, we first establish a closed-form characterization of the probability of industry
j to be adopted as a supplier to industry i. We then prove the main result of this section,
showing that under a stronger version of Assumption 5 on the shape of the αij param-

29We omit the proof of this theorem, since it is a small variation of the proof of Theorem 6.
30A noteworthy observation is that in Theorem 6, industries will on average tend to add suppliers, though

these will not affect the intermediate share much after time T (because of Assumption 5). Here, instead, new
input combinations may reduce the intermediate share of value added.

31Our cross-sectional results can also be developed in the context of a growing economy as in the previous
section. We focus on the static economy for simplicity.
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ENDOGENOUS PRODUCTION NETWORKS 61

eters, the distribution of indegrees is concentrated (thus exhibiting limited inequality),
while the distribution of outdegrees is much more unequal. In other words, industries
tend to be similar in terms of how many inputs they use, but they are very different in
terms of how many other industries they supply. This contrast is in line with the patterns
visible from the U.S. input–output tables (e.g., Acemoglu et al. (2012)).

6.1. Closed-Form Expressions for Edge Probabilities

In the rest of this section, we work under the following modified version of Assump-
tion 4.

ASSUMPTION 4′: Productivities are given by ai(Si) = ∑
j∈Si bj + ε(Si), where ε(Si) is an

(independent) draw from a Gumbel distribution with cdf �(x;σ) = e−e−x/σ for each Si ⊂
{1�2� � � �}.

This assumption allows the productivity of a set of inputs to depend on the “average”
productivity of the inputs as well as a random term drawn from a Gumbel distribution.32

For our analysis in this section, it is convenient to assume that the bj ’s are given (so that
we can condition on them without introducing additional notation). Under Assumption 4′,
we can compute a closed-form (generalized) logit expression for the probability that an
edge (i� j) is present in the production network.

LEMMA 4—Conditional Edge Probabilities: Suppose that Assumptions 1′ and 4′ hold.
Then:

1. Conditional on the price vector P , the probability of industry j choosing Si as its set of
suppliers is

Pr(Si|P)= e
∑
j∈Si

bj−αijpj
σ∑

S′
i

e
∑
j∈S′

i

bj−αijpj
σ

=

∏
j∈Si
e
bj
σ P

− αij
σ

j

Zi
�

2. Conditional on the price vector P , the probability that industry j is a supplier to industry
i is

Pr(j ∈ Si|P)= e
bj
σ P

− αij
σ

j

1 + ebjσ P− αij
σ

j

�

Lemma 4 also yields a simple (generalized) logit equation for the expected outdegree—
or number of customers—of industry j:

∑
i∈N

Pr(j ∈ Si|P)=
∑
i∈N

e
bj
σ P

− αij
σ

j

1 + ebjσ P− αij
σ

j

� (15)

which we will use in the rest of the section.

32We show in Proposition B4 in Appendix B that if the bj ’s are independent random variables that satisfy
Pr[bj >−σ log 2]> ρ for some ρ > 0, then Corollary 3 applies and implies that there is sustained growth in the
long run.
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62 D. ACEMOGLU AND P. D. AZAR

6.2. The Distribution of Indegrees and Outdegrees in Large Networks

We now proceed to characterize the distribution of indegrees and outdegrees of large
networks. Let {E(n)}∞

n=1 be a sequence of economies where E(n) has n industries, and let
S(n) be the equilibrium network in economy E(n). Let Ii(n) = 1

n

∑n

j=1αij(S(n)) be the
(normalized) indegree of industry i in economy E(n) (meaning that it is normalized by
the number of industries in the economy, n), and let I(n) = {Ii(n)}ni=1 be the sequence
of (normalized) indegrees. Analogously, let Oj(n)= 1

n

∑n

i=1 αij(S(n)) be the (normalized)
outdegree of industry j and let O(n) = {Oj(n)}nj=1 be the sequence of (normalized) out-
degrees.33 Both I(n) and O(n) are random variables over Rn, where randomness comes
from the fact that {ai(Si)}i�Si is a sequence of random variables. Furthermore, for every
i= 1�2� � � � � n, we have Ii(n)�O(n)≤ 1, so I(n) and O(n) can be interpreted as elements
of �∞ (with Ii(n)=Oi(n)= 0 for all i > n).

The main result in this section, established in Theorem 10, is that the distribution of
indegrees I(n) converges uniformly to the sequence (0�0�0� � � �) ∈ �∞ almost surely,
while the limsup and liminf of the sequence O(n) of outdegrees converge to non-
degenerate distributions over �∞, which together imply that O(n) cannot converge to
a non-degenerate distribution. To prove convergence in the first part of the theorem, we
introduce the following strengthening of Assumption 5.

ASSUMPTION 5′: Suppose that Assumption 5 holds. In addition, for every industry j, the
limit limn→∞ 1

n

∑n

i=1 αij of average exogenous outdegrees always exists.

In what follows, we use the notation αj = limn→∞ 1
n

∑n

i=1 αij and α= {αj}j∈N.

THEOREM 10—Indegrees and Outdegrees: Suppose Assumptions 1′, 4′, and 5′ hold.
Then:

1. I(n) converges uniformly and almost surely to a degenerate distribution at 0 ∈ �∞.
2. O = lim supn→∞ O(n) is a non-degenerate distribution and Oj ≤ αj for all j.

3. O = lim infn→∞ O(n) is a non-degenerate distribution and Oj ≥ αj e
bj

1+ebj for all j.

Theorem 10 establishes that the distribution of outdegrees will be much more unequal
than the distribution of indegrees. This is consistent with the properties of the U.S. input–
output tables, for example, as documented in Acemoglu et al. (2012), who showed that
the distribution of outdegrees has an approximate power law distribution (or Pareto tail).
The next result is a direct corollary of this theorem and shows that if the distribution
of αij ’s can be approximated by a power law distribution, then so can the distribution of
outdegrees. For this result, we utilize a simplified version of the definition of power law
distribution used in Acemoglu et al. (2012).

COROLLARY 4: Suppose in addition that αij ’s have a power law distribution in the sense
that αj ’s in Assumption 5′ satisfy αj = Bj−δh(j), where δ > 1, h(j) is a function satisfy-
ing limx→∞ h(x)xν = ∞ and limx→∞ h(x)x−ν = 0 for all ν > 0, and B > 0 is such that

33To simplify the terminology, we refer to I(n) and O(n) as sequences of indegrees and outdegrees, rather
than normalized indegrees and normalized outdegrees. Clearly, indegrees and outdegrees can be obtained by
multiplying I(n) and O(n) by n.

 14680262, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
15899 by T

est, W
iley O

nline L
ibrary on [08/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENDOGENOUS PRODUCTION NETWORKS 63∑n

j=1 αj < 1. Then Oj has a power law distribution. In particular,

Bj−δh(j)
ebj

1 + ebj ≤Oj ≤Oj ≤ Bj−δh(j)�

7. THE CONTRIBUTION OF NEW INPUT COMBINATIONS TO GROWTH

In this section, we take a first step to estimate the contribution from new input combi-
nations to industry productivity growth.

7.1. Data Description

The NBER-CES manufacturing database provides data on value added, employment,
and capital stock for 459 manufacturing industries (identified by their 1987 SIC code) for
the 1958–2011 period. This data set also includes estimates of total factor productivity
(TFP). We combine these with data for 36 non-manufacturing industries from the Bu-
reau of Economic Analysis (BEA) for 1987–2016. The BEA also provides detailed input–
output tables every five years during the 1972–2007 period. Our main sample centers on
1987–2007 when we have all three of these data sources available. We use the harmonized
input–output tables from Acemoglu, Autor, and Patterson (2017), aggregated to 1987 SIC
codes for manufacturing industries, and NIPA categories for non-manufacturing indus-
tries. We merge these data with estimates of TFP growth from the NBER-CES database
and the BEA. The resulting data set contains 452 manufacturing industries and 36 non-
manufacturing industry for the years 1987, 1992, 1997, 2002, and 2007.34

7.2. Estimating Industry Productivity Growth From New Input Combinations

In this subsection, we develop an illustrative estimate of the contribution of new input
combinations to industry productivity and thus aggregate TFP growth. We use the struc-
ture outlined in Theorem 6, which links productivity gains to new input combinations.

One complication is that changes in input combinations result from two distinct
sources—reductions in prices of existing inputs encouraging their adoption and new in-
puts providing new input combinations with significantly higher productivity. We are in-
terested in the latter type of change, which is the source of sustained growth in Theorem 6.
Though in the data it is impossible to distinguish precisely between these two sources of
changes in input combinations, we can do so approximately based on the following ob-
servation. Price-induced changes will typically involve the addition of one or a few inputs
in a given time period. In contrast, when a sector adopts a “truly new input”—that is, an
input that was previously not available to it—this will be associated with a large rearrange-
ment of its input structure (if input productivities were identically and independently dis-
tributed, we would expect the sector in question to change, on average, half of its inputs).
Motivated by this reasoning, we focus on “large” changes in input combinations. More

34Figure 1 in the Introduction uses BEA’s harmonized summary tables for 1963–1997, which are available for
61 industries. Though summary tables are also available for 1948–1962 and 1997–2016, in Figure 1 we focused
on 1963–1997 to avoid the changes in industry definitions in 1963 and 1997. Also, in Appendix D, we use the
BEA 2007 input–output tables directly rather than the harmonized tables (since harmonization changes the
sparsity of the input–output matrix, which is important for our exercise in Appendix D).
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64 D. ACEMOGLU AND P. D. AZAR

specifically, for every industry i and time t, we first compute the Jaccard distance of sets
of suppliers between t and t − 1,

Ji(t)=
∣∣Si(t)∪ Si(t − 1)

∣∣ − ∣∣Si(t)∩ Si(t − 1)
∣∣∣∣Si(t)∪ Si(t − 1)

∣∣ �

which is a simple measure of the relative change in the number of suppliers.35 We then
code a dummy for this measure being above the 20th percentile of its distribution in that
year across all industries. This dummy, denoted by Ji�20(t), is a proxy for significant change
in input structure (and in Appendix C of the Supplemental Material, we show similar
results with different definitions). Using this proxy, we estimate the regression model

�ai(t)= γ�Ji�20(t)+ νi +η(t)+ εi(t) (16)

on our five-yearly panel between 1987 and 2007 with 488 industries. Here �ai(t) is the
five-year change in (log) TFP; η(t) denotes a full set of time effects, capturing any com-
mon component to industry productivity growth; νi denotes a full set of industry dummies,
which allow for industry-specific linear trends in productivity capturing the influence of
other factors leading to differential productivity growth across industries; and finally, εi(t)
is an error term representing all other influences. Intuitively, this regression estimates the
extent to which industries undergoing significant changes in their input structure are ex-
periencing more rapid TFP growth.

The regression results are reported in Table I. Panel A is for all industries, while Panel B
focuses on the manufacturing sector. Panel C drops computers and related sectors (three-
digit SIC codes 357 and 367), which have experienced the fastest productivity growth dur-
ing this time period; this is most likely for reasons that are unrelated to our mechanism
and thus we would like to ensure that our results are not driven by the computer sec-
tor. The first column in all three panels includes only time period dummies (and thus no
industry-specific linear trends). The second column adds industry-specific linear trends,
which take out any systematic differences in productivity growth across industries that are
likely to be unrelated to our mechanism. The third column also adds the lagged industry
TFP growth, �ai(t − 1), to capture any dynamics in sectoral TFP. Throughout, the stan-
dard errors are robust against arbitrary heteroscedasticity and serial correlation at the
level of industries.

In all columns, we estimate a positive and statistically significant association between
our dummy for significant change in input combinations and industry productivity growth.
For example, the parameter estimate in column 1 Panel A is 0�018 (standard error =
0.007). It becomes a little larger when we include linear trends by industry and lagged
TFP on the right-hand side.

We next use the coefficient estimates from Table I to get an illustrative estimate of
the contribution of new input combinations to productivity growth. Namely, we compute
counterfactual industry productivity growth driven entirely by Ji�20(t) in (16). These (coun-
terfactual) productivity gains from new input combinations are reported at the bottom of
each panel and are quite sizable. The estimate from column 1 in Panel A, for instance,
implies that without the productivity gains from (significant) new input combinations, av-
erage productivity growth would have been lower by 0�42 percentage points or by about

35Relative to the Hamming distance, |Si(t)∪Si(t−1)|−|Si(t)∩Si(t−1)|, this measure does not give greater
weight to industries that have a larger number of suppliers.
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ENDOGENOUS PRODUCTION NETWORKS 65

TABLE I

NEW INPUT COMBINATIONS AND TFPa

(1) (2) (3)

Panel A: All Industries (1987–2007)
Ji�20 0.018 0.020 0.047

(0.007) (0.010) (0.014)
Counterfactual TFP change 0.42% 0.48% 1.12%

Panel B: Manufacturing (1987–2007)
Ji�20 0.018 0.021 0.047

(0.008) (0.011) (0.016)
Counterfactual TFP change 0.42% 0.49% 1.14%

Panel C: All Industries Excluding Computers (1987–2007)
Ji�20 0.011 0.011 0.033

(0.006) (0.009) (0.014)
Counterfactual TFP change 0.25% 0.25% 0.78%

Linear industry trends No Yes Yes

Control for lagged change in TFP No No Yes

aThe table presents OLS estimates of the regression equation � log TFPi(t) =
βJi�20(t)+ γi + ν(t)+ εi(t) using a data set of five-year stacked-differences for 488 indus-
tries between 1987 and 2007. Ji�20(t) is a dummy indicating the Jaccard distance between
the sets of inputs Si(t) and Si(t − 1) being above the 20th percentile of its distribution in
that year. Column 1 only includes period dummies. Column 2 adds industry-specific linear
trends, the γi ’s. Column 3 adds lagged change in log TFP, � log TFPi(t − 1). Panel A is for
the entire sample. Panel B focuses on manufacturing industries and Panel C excludes com-
puter industries (those within the three-digit SIC industries 357 and 367 SIC 357 or 367).
Standard errors that are robust against arbitrary heterosedasticity and serial correlation at
the level of industry are reported in parentheses.

40% (relative to the annualized average industry TFP growth of 1�05% over this time
period). The estimates in column 2, which incorporate differential trends in productivity
growth across industries, are broadly similar (e.g., a 0�48 percentage point contribution
from new input combinations in Panel A). When we allow for serially-correlated TFP dy-
namics by controlling for lagged TFP on the right-hand side, the estimates and implied
magnitudes are significantly larger and suggest an even more important role for new input
combinations.

In Appendix C, we report several more robustness checks. First, we show results using
dummy variables with 10% and 30% cutoffs, Ji�10(t) and Ji�30(t), with very similar results.
We also present weighted regressions using value added of an industry in 1987 as weights.
Finally, we report an analogous specification using data only from the 1997–2007 period in
order to remove any effect arising from the transition form SIC to NAICS codes in 1997.
The results are again broadly similar, though sometimes less precise in some specifications
in Panel C.

Overall, this exercise suggests that productivity gains from new input combinations
could be quite large. Nevertheless, our estimates should be read as illustrative for at least
two reasons. First, they rely on the structure of our model, which is simplified in many
dimensions. Second, the coefficient estimates in Table I may be upwardly biased and thus
exaggerate the contribution of new input combinations to productivity growth if sectors
that increase their productivity for other reasons nonetheless end up increasing the range
of inputs they use (e.g., exogenous innovations may encourage the use of new inputs, even
if these are not crucial for the productivity growth that these innovations bring). A more
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66 D. ACEMOGLU AND P. D. AZAR

systematic analysis of the implications and productivity contributions of changing input–
output linkages is beyond the scope of the current paper and is an area for future work.

8. CONCLUSION

How production is organized differs markedly between countries and over time. For
example, the input–output linkages in the U.S. economy have become denser over the
last 50 years, and richer and more productive countries appear to have denser production
networks. We develop a tractable model of endogenous production networks to provide
a conceptual framework for understanding these patterns and how differences in distor-
tions or technologies can translate into variation in production networks.

In our model, each product can be produced by combining labor and an endogenous
subset of the other products as inputs. Combinations of inputs generate different constant
returns to scale production functions with (prespecified) levels of productivity. There may
also be distortions affecting different industries due to taxes, regulations, contracting fric-
tions, or markups. Using this setup, we establish the existence and uniqueness of an equi-
librium with an endogenous production network, and explore its efficiency properties. We
then use our framework to clarify several new economic tradeoffs and comparative statics
that arise in the context of endogenous production networks. Namely:

• when a product adopts additional inputs to minimize its costs, this not only reduces
its price, but (weakly) reduces all prices in the economy. This “complementarity” is a
consequence of the fact that this product has now become a cheaper input to all other
industries;

• under a reasonable assumption that ensures that lower prices do not discourage tech-
nology adoption, a change in technology that makes the adoption of additional inputs
more productive for one industry—or a reduction in distortions in one industry—expands
technology sets for all industries. This second dimension of complementarity is a new
feature of environments with endogenous production networks;

• the technology comparative statics mentioned in the previous bullet point are po-
tentially “discontinuous” in the sense that a small change for a single industry can cause
large changes in GDP or trigger a chain reaction, leading to major shifts in the production
structure of many industries.

The second part of the paper uses a dynamic version of our framework to study the
growth implications of endogenous production networks. Our main result from this anal-
ysis is that the selection of input suppliers and the indirect effects that this creates on the
equilibrium structure of the production network emerge as powerful forces for sustained
economic growth. The origin of sustained growth in our model is related to, but different
from, Weitzman’s (1998) idea of recombinant growth. When a new product arrives, it be-
comes a potential input for all existing products, and significantly expands the number of
input combinations (production techniques) available to other industries. Namely, when
there are n products, the arrival of one more new product increases the combinations
of inputs that each existing product can use from 2n−1 to 2n, and thus enables nontrivial
cost reductions from the choice of optimal technology combinations. A first impetus for
growth comes from this expanded set of techniques to which firms have access. Growth
in our economy is not driven by this first impetus alone, however. It is undergirded by the
fact that the adoption of a new production technique reduces the price of the relevant
product, encouraging other industries to adopt this product as an additional input and
change their production techniques.
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ENDOGENOUS PRODUCTION NETWORKS 67

We view our paper as a first step in the analysis of endogenous formation of produc-
tion networks. First, our analysis was greatly simplified by the contestability assumption
and the “no substitution” property that this implied. The study of firm-level production
networks will necessitate a framework that incorporates a more realistic market struc-
ture, relationship-specific investments, and bargaining between firms and their potential
suppliers. Second, incorporating stochastic elements and failures of input suppliers or cus-
tomers on productivity and sourcing decisions is another interesting and challenging area
for future research. Third, another topic for future research is a more in-depth structural
exercise estimating the parameters regulating the endogenous evolution of production
networks, which can then be used for counterfactual analysis to understand over-time and
cross-country differences in the organization of production. Beyond firm-level data sets
with information on flows of intermediate goods, detailed bilateral international trade
flows would be another empirical domain where a similar approach could be developed.
Finally, our empirical exercise on the contribution of the changing input–output structure
to economic growth was illustrative. Further exploration of the theoretical and empirical
linkages between the evolution of the production network and long-run economic growth
is another promising area.

APPENDIX A: OMITTED PROOFS FROM THE TEXT

PROOF OF LEMMA 1: First, suppose that P∗ is a vector of equilibrium prices. Then,
from the contestability condition of Definition 1, (6), we have P∗

i = (1 +μi)Ki(Si�Ai�P
∗)

for each i= 1�2� � � � � n.
To prove the other direction, suppose that P∗

i = (1 + μi)Ki(Si�Ai�P
∗) for each i =

1�2� � � � � n. We show that P∗ supports a unique equilibrium.
Let X∗

i and L∗
i be the solutions to the cost minimization problem of a representative

firm in industry i, (3). For given P∗, let x∗
ij denote the units of good j used for producing

one unit of good i. Similarly, let l∗i be the unit labor requirement of good i. In view of
Assumption 1, these objects are uniquely defined (because of strict quasi-concavity) and
are independent of the equilibrium output of this industy, Y ∗

i (because of constant returns
to scale), but depend on the price of vector P∗. Clearly, X∗

ij = x∗
ijY

∗
i and L∗

i = l∗i Y ∗
i .

Let YN = 1 + ∑n

i=1 λi
μi

1+μi P
∗
i Y

∗
i denote the income of the representative household and

C∗
j = C∗

j (Y
N�P∗) be its optimal consumption of good j at prices P∗ and income YN .

The market clearing condition C∗
j + ∑n

i=1X
∗
ij = Y ∗

j then implies

C∗
j +

n∑
i=1

x∗
ijY

∗
i = Y ∗

j �

Multiplying this equation by P∗
j , we obtain

P∗
j C

∗
j +

n∑
i=1

P∗
j x

∗
ijY

∗
i = P∗

j Y
∗
j �

or

Ĉj +
n∑
i=1

P∗
j x

∗
ij

P∗
i

Ŷ ∗
i = Ŷ ∗

j �
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68 D. ACEMOGLU AND P. D. AZAR

where “^” denotes a nominal variable. Let X be a matrix whose (i� j)th component is
Xij = P∗

j x
∗
ij

P∗
i

. Combining these equations across industries, the vector of nominal outputs,
Ŷ , is a solution to the following fixed point equation:

Ŷ =�(Ŷ )= Ĉ(Ŷ �P)+X ′
Ŷ � (A1)

where the second equality defines the matrix function �(Ŷ ). We next prove that, given
P∗, (A1) has a unique fixed point, from which all equilibrium quantities can be derived
uniquely.

First note that since the utility function is differentiable (cf. Assumption 2), C(Ŷ �P)
and thus �(Ŷ ) is differentiable. Denote the Jacobian of �(Ŷ ) by J and its (i� j) entry
by Ji�j = ∂Ĉi

∂Ŷj
+ P∗

i xji

P∗
j

≥ 0 (since all goods are normal from Assumption 2). We now show

that ‖J‖1 = maxj
∑n

i=1 Ji�j < 1. To see this, note that the representative household’s budget
constraint implies

∑n

i=1 Ĉi = 1+∑n

i=1 λi
μi

1+μi Ŷi. Differentiating this expression with respect
to Ŷj , we obtain

n∑
i=1

∂Ĉi

∂Ŷj
= λj μj

1 +μj � (A2)

Then rearranging (6) and using the fact that labor is essential from Assumption 1, we
have

n∑
i=1

P∗
i x

∗
ji

P∗
j

<
Kj

(
Sj�Aj(Sj)�P

∗)
P∗
j

= 1
1 +μj � (A3)

Adding up (A2) and (A3), we obtain

n∑
i=1

Ji�j =
n∑
i=1

∂Ĉi

∂Ŷj
+ P∗

i x
∗
ji

P∗
j

< λj
μj

1 +μj + 1
1 +μj ≤ 1 for all j�

Since this holds for all columns j of matrix J, ‖J‖1 < 1. Using the definition of matrix
norm, we have that, for any Ŷ , Ŷ ′,∥∥�(Ŷ )−�(

Ŷ ′)∥∥
1
≤ ‖J‖1

∥∥Ŷ − Ŷ ′∥∥
1
� (A4)

Since ‖J‖1 < 1, (A4) implies that �(Ŷ ) is a contraction, and thus given price vector P∗,
there exists a unique fixed point Ŷ ∗ of �. Furthermore, all equilibrium quantities can be
determined from this fixed point as: Y ∗

i = Ŷi(P
∗)

P∗
i

, C∗
i = Ĉi(Ŷ (P

∗)�P∗)
P∗
i

, X∗
ij = x∗

ijY
∗
i , and L∗

i =
l∗i Y

∗
i for all i= 1�2� � � � � n. This completes the proof that given a production network S, a

price vector P∗ that satisfies (6) is an equilibrium. Q.E.D.

PROOF OF THEOREM 1: Let κ(P) = ((1 + μ1)minS1 K1(S1�A1(S1)�P)� � � � �
(1 + μn)minSn Kn(Sn�An(Sn)�P)). We first show that κ has a fixed point, and then show
that this corresponds to an equilibrium. To do this, we prove the following lemma as an
intermediate step.

LEMMA A1: Let L = {P ≥ 0 : Pi = (1 + μi)minSi Ki(Si�Ai(Si)�P)}. Then L is a non-
empty complete lattice with respect to the operations P ∧ Q = (min(P1�Q1)� � � � �min(Pn�
Qn)), P ∨Q= (max(P1�Q1)� � � � �max(Pn�Qn)).
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ENDOGENOUS PRODUCTION NETWORKS 69

PROOF OF LEMMA A1: Let O = {(x1� � � � � xn) : xi ≥ 0}, and then by definition κ : O →
O. We will first show that there is a subset Õ ⊂ O which is a complete lattice with respect
to ∧ and ∨, and then establish that κ(P) is increasing in P and maps Õ to Õ. The result
that L is a complete lattice follows from these two steps.

To establish the first step, note that, for any i, we can produce good i using only
labor and incur a cost Pi = (1 + μi)Ki(∅�Ai(∅)� {Pj}j∈∅) that does not depend on the
price vector P . Thus, we have κ(P) ≤ (P1� � � � �Pn) for all price vectors P . Since labor
is essential in production, we have (1 + μi)Ki(Si�Ai(Si)�0) > 0 for every set Si. De-
fine Pi = κi(0) = (1 + μi)minSi Ki(Si�Ai(Si)�0). Since Ki is increasing in price, we have
κ(P)≥ κ(0)= (P1� � � � �Pn) for every price vector P . Then Õ = ×n

i=1[Pi�Pi] is a complete
lattice, and κ maps Õ to Õ.

The second step is immediate from the definition of κ(P). If P ′ ≤ P , then for any i and
Si, we have (1 +μi)Ki(Si�Ai(Si)�P

′)≤ (1 +μi)Ki(Si�Ai(Si)�P). Taking minima on both
sides, we get (1 +μi)minSi Ki(Si�Ai(Si)�P)≤ (1 +μi)minSi Ki(Si�Ai(Si)�P

′), so κ(P ′)≤
κ(P). We conclude from Tarski’s fixed point theorem that L is a non-empty complete
lattice. Q.E.D.

Since L is a non-empty complete lattice, κ has a fixed point, and in fact, a small-
est fixed point. Take this smallest fixed point, which simultaneously satisfies P∗

i = (1 +
μi)Ki(S

∗
i �Ai(S

∗
i )�P

∗) and S∗
i ∈ arg minSi (1 + μi)Ki(Si�Ai(Si)�P

∗). Moreover, since la-
bor is essential (Assumption 1), we have P∗

i > 0 for each i = 1�2� � � � � n. Then, be-
cause given P∗ > 0, technology choice S∗

i is optimal, and given S∗, firms minimize costs,
Lemma 1 implies that there exist equilibrium quantities X∗, L∗, and C∗, and thus
(P∗� S∗�C∗�L∗�X∗�Y ∗) is an equilibrium. Q.E.D.

PROOF OF THEOREM 2: Let P∗ be the minimal element of lattice L defined in the proof
of Theorem 1, which is of course an equilibrium price vector. If P∗∗ is another equilibrium
price vector, it must be contained in L and therefore satisfy P∗∗ > P∗. We now derive a
contradiction to P∗∗ >P∗.

First, note that for each i = 1�2� � � � � n, the unit cost function Ki(Si�Ai(Si)�P) is con-
cave in prices given Si. Since the minimum of a collection of concave functions is concave,
κi(P)= (1 +μi)minSi Ki(Si�Ai(Si)�P) is also concave.

Then, let ν ∈ (0�1) be such that νP∗∗ ≤ P∗, with at least some r = 1�2� � � � � n such that
νP∗∗

r = P∗
r . We have

κr
(
P∗) − P∗

r ≥ κr
(
νP∗∗) − νP∗∗

r

≥ (1 − ν)κr(0)+ νκr
(
P∗∗) − νP∗∗

r

≥ (1 − ν)κr(0)
> 0�

where the first line follows because κr is nondecreasing, νP∗∗ ≤ P∗, and νP∗∗
r = P∗

r . The
second line follows from the concavity of κr . The third line simply uses the fact that P∗∗ is
a fixed point, that is, κr(P∗∗)= P∗∗

r . Finally, the last inequality follows because labor is es-
sential by Assumption 1, which implies κr(0) > 0. But this contradicts the hypothesis that
P∗ is a fixed point. This contradiction establishes the uniqueness of equilibrium prices,
and then the uniqueness of equilibrium allocations follows from Lemma 1.36

36This part of the proof builds on Kennan’s (2001) proof of uniqueness of fixed point for a concave function.
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70 D. ACEMOGLU AND P. D. AZAR

To prove that the equilibrium network is generically unique, let S∗ �= S∗∗ be two arbitrary
networks and let A(S�S∗∗) = {A : S∗ and S∗∗ are both equilibrium networks}. Note that
we can write A as the countable union

⋃
S∗�S∗∗ A(S∗� S∗∗). Thus, if we prove that A(S∗� S∗∗)

has measure zero, then we can conclude that A has measure zero. Define

�i
(
S∗� S∗∗�A

) = (1 +μi)Ki

(
S∗
i �Ai

(
S∗
i

)
�P∗) − (1 +μi)Ki

(
S∗∗
i �Ai

(
S∗∗
i

)
�P∗)�

and note that for all parameters A ∈ A(S∗� S∗∗) and each i ∈ {1� � � � � n}, we have
�i(S

∗� S∗∗�A)= 0.
Because S∗ �= S∗∗, there is at least one industry i such that S∗

i �= S∗∗
i . Recall also that

the cost function Ki(Si�Ai(Si)�P) is continuous and strictly decreasing in Ai(Si) ∈ R
�.

Let Ai�−S∗
i

= {Ai(Si)}Si �=S∗
i

be the vector of all technology terms for sets different than
S∗
i and let Ai�−1(S

∗
i ) = {Ai�2(S

∗
i )� � � � �Ai��(S

∗
i )} be the vector of all components of Ai(S

∗
i )

except for the first component Ai�1(S
∗
i ). If we keep Ai�−S∗

i
and Ai�−1(S

∗
i ) constant, then

�i(S
∗
i � S

∗∗
i �A) is a continuous and strictly decreasing function of one real variableAi�1(S

∗
i ).

This implies that, for any fixed Ai�−S∗
i
, Ai�−1(S

∗
i ), there exists a unique value of Ai�1(S

∗
i )

that satisfies �i(S∗
i � S

∗∗
i �A) = 0. Hence, A(S∗� S∗∗) = {A : �i(S∗

i � S
∗∗
i �A) = 0 for each i}

has measure zero in R
n×�×2n−1 , which implies that the equilibrium network is generically

unique. When the equilibrium network is unique, so are equilibrium quantities, C∗, L∗,
X∗, and Y ∗. Q.E.D.

PROOF OF THEOREM 3: First, for a given production network S, the Pareto efficient
allocation is a solution to the following program:

U(S)= max
C�X�L

u(C1� � � � �Cn)

subject to
n∑
i=1

Li ≤ 1

n∑
i=1

Xij +Cj ≤ Fj
(
Sj�A(Sj)�Lj�Xj

)
for j = 1� � � � � n�

(A5)

This is a concave, differentiable maximization problem (with a non-empty interior of
the constraint set), so the Karush–Kuhn–Tucker (KKT) theorem applies (e.g., Bertsekas,
Nedic, and Ozdaglar (2003)), and implies that (CE�XE�LE) is a solution if and only if
there exists a vector of multipliers (χ0�χ1� � � � �χn) > 0 such that

∂uj/∂Cj

∂ui/∂Ci
= χj

χi
for any i� j� (A6)

and also when Si �= ∅,

∂Fi

∂Xij

= χj

χi
for any i and j ∈ Si� (A7)

and
∂Fi

∂Li
= χ0

χi
� (A8)
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ENDOGENOUS PRODUCTION NETWORKS 71

Finally, any Pareto efficient production network satisfies SE ∈ arg maxS U(S), where U(S)
is defined by (A5).

Note also that (A7) and (A8) are the necessary and sufficient first-order conditions for
cost minimization taking the Lagrange multipliers as prices, and thus, using the definition
of the unit cost function in (3) and also choosing the same numeraire as in our equilibrium
analysis, which implies χ0 = 1, we have

χj =Kj

(
SEj �Aj

(
SEj

)
�χ

) =LEj +
n∑
i=1

χiX
E
ji � (A9)

where χ= (χ1� � � � �χn).
The equilibrium (P∗� S∗�C∗�L∗�X∗�Y ∗), on the other hand, satisfies

∂uj/∂Cj

∂ui/∂Ci
= P∗

j

P∗
i

for any i� j� (A10)

and also when Si �= ∅,

∂Fi

∂Xij

= (1 +μi)P∗
j

P∗
i

for any i and j ∈ Si� (A11)

and
∂Fi

∂Li
= 1 +μi

P∗
i

� (A12)

and (6) for any j with Kj(S
∗
j �Aj(S

∗
j )�P

∗) as given in (3). In addition, we have the market
clearing constraint given by part four of Definition 1. We now prove the claims in the
theorem.

1. Suppose that μi = 0 for all i = 1�2� � � � � n and take the equilibrium production
network S∗ as given. Set χ0 = 1 and χj = P∗

j = Kj(S
∗
j �Aj(S

∗
j )�P

∗). This verifies that
given S∗, the equilibrium allocation in this case is Pareto efficient. Moreover, since
S∗
j ∈ arg minSj Kj(Sj�Aj(Sj)�P

∗), S∗ also maximizes U(S), and thus the equilibrium with
no distortions is Pareto efficient.

2. Suppose that SE = (∅� � � � �∅), μ1 = · · · = μn = μ0 > 0 and λ1 = · · · = λn = 1. Since
there are no input–output linkages and production functions exhibit constant returns to
scale from Assumption 1, they are all linear in labor, and thus we no longer have condi-
tions (A7) and (A11) in this case. Since λi = 1 for all i, the market clearing condition in
Definition 1 coincides with the resource constraint in (A5). If we set χ0 = (1 + μ0) and
χi = P∗

i for all i, then we have that any allocation that satisfies (A12) also satisfies (A8),
and any allocation that satisfies (A10) also satisfies (A6). The KKT theorem then implies
that the equilibrium is Pareto efficient.

3. Now (∅� � � � �∅) is no longer Pareto efficient. If S∗ = (∅� � � � �∅), the equilibrium is
necessarily Pareto inefficient. Hence suppose that S∗ = SE �= (∅� � � � �∅), and without loss
of any generality, suppose S∗

i �= ∅. We again have μ1 = μ2 = · · · = μn = μ0 > 0. Suppose, to
obtain a contradiction, that, given S∗, the equilibrium allocation is Pareto efficient. From
(6) for industry j, P∗

j = (1 + μ0)Kj(S
∗
j �Aj(S

∗
j )�P

∗). To satisfy (A6) and (A10), we need
χi =ψP∗

i for some constant ψ> 0. From (A8), Pareto efficiency then requires

1
P∗
i

1 +μ0

= ∂Fi

∂Li

∣∣∣∣
Li=L∗

= ∂Fi

∂Li

∣∣∣∣
Li=LE

= 1
χi
�
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72 D. ACEMOGLU AND P. D. AZAR

This implies χi = P∗
i

1+μ0
and thus ψ = 1

1+μ0
. Next recall that χi = Ki(S

E
i �Ai(S

E
i )�χ) =∑

j∈SEi χjX
E
ij +LE , which implies

Ki

(
S∗
i �Ai

(
S∗
i

)
�ψP∗) =ψP∗

i = 1
1 +μ0

P∗
i =Ki

(
S∗
i �Ai

(
S∗
i

)
�P∗)�

and yields a contradiction since ψP∗ <P∗ and the cost function is strictly increasing in the
price vector (in view of the fact that Si �= ∅).

4. Suppose first that there exist i, i′ such that μi �= μ′
i, and suppose again that SE = S∗

(otherwise we are done). To simultaneously satisfy (A8) and (A10), we need P∗
i

P∗
i′

= χi
χi′

. But

from (A9), we have

χi

χi′
= Ki

(
SEi �Ai

(
SEi

)
�χ

)
Ki′

(
SEi′ �Ai′

(
SEi′

)
�χ

) �
and from (6),

P∗
i

Pi′
= (1 +μi)Ki

(
S∗
i �Ai

(
S∗
i

)
�P∗)

(1 +μi′)Ki′
(
S∗
i′�Ai′

(
S∗
i′
)
�P∗) �

Since the hypothesis μi �= μ′
i, S

E = S∗ and again χ=ψP∗ (for ψ> 0), the previous two ex-
pressions yield a contradiction and imply that there exists no vector of multipliers that can
satisfy the KKT theorem in the equilibrium allocation, establishing Pareto inefficiency.

Finally, suppose there exists an industry i such that (1 − λi)μi > 0; then inefficiency
follows from a simple contradiction argument. Suppose the equilibrium were inefficient.
Then

YE
i = CE

i +
n∑
j=1

XE
ji = C∗

i +
n∑
j=1

X∗
ji =

(
1 − (1 − λi) μi

1 +μi
)
Y ∗
i < Y

E
i �

where the third equality uses the market clearing condition from Definition 1. This con-
tradiction completes the proof of the theorem. Q.E.D.

PROOF OF LEMMA 2: Let i = 1�2� � � � � n, and let S′
i ⊃ Si�A

′
i ≥ Ai. Let X = (Si�A

′
i),

Y = (S′
i�Ai) and use the product lattice ordering so that X ∨ Y = (S′

i�A
′
i), X ∧ Y =

(Si�Ai). Suppose that Ki(S
′
i�Ai(S

′
i)�P) − Ki(Si�Ai(Si)�P) ≤ 0. In our lattice notation,

this can be written as Ki(Y) ≤ Ki(X ∧ Y). The quasi-submodularity of Ki implies that
Ki(X ∨Y)≤Ki(X ) which is the same as writingKi(S

′
i�A

′
i(S

′
i)�P)−Ki(Si�A

′
i(Si)�P)≤ 0.

Thus, we conclude that

Ki

(
S′
i�Ai

(
S′
i

)
�P

) −Ki

(
Si�Ai(Si)�P

) ≤ 0

=⇒ Ki

(
S′
i�A

′
i

(
S′
i

)
�P

) −Ki

(
Si�A

′
i(Si)�P

) ≤ 0� Q.E.D.

PROOF OF THEOREM 4: Let P0 = P∗ and S0 = S∗ be the initial vector of equilibrium
prices and equilibrium network. Note that P0 satisfies the fixed point conditions P0

i =
(1 +μi)minSi Ki(Si�A(Si)�P

0) for all i. Suppose that Ai(·) increases to A′
i(·), and define

P1 so that P1
i = (1 + μi)minSi Ki(Si�A

′
i(Si)�P

0). Since Ki is decreasing in Ai, we have
P1
i = (1 +μi)minSi Ki(Si�A

′
i(Si)�P

0)≤ (1 +μi)minSi Ki(Si�Ai(Si)�P
0)= P0

i , establishing
that P1 ≤ P0.
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ENDOGENOUS PRODUCTION NETWORKS 73

As in the proof of Theorem 1, define κi(P)= (1+μi)minSi Ki(Si�A
′
i(Si)�P). The equi-

librium price P∗∗ under the new productivity function A′
i is the minimal fixed point of κ.

For t ≥ 1, define Pt = κ(Pt−1) and note that, since κ is increasing in P and P1 ≤ P0, we
have limt→∞ Pt ≤ P1 ≤ P0 = P∗. Furthermore, since κ is continuous, limt→∞ Pt is a fixed
point of κ. Since P∗∗ is the minimal fixed point, we must have P∗∗ ≤ limt→∞ Pt ≤ P0 =
P∗. Q.E.D.

PROOF OF THEOREM 5: Let S0 = S∗ be the initial equilibrium network. Note that S0

satisfies the fixed point conditions S0
i = arg minSi (1 + μi)Ki(Si�A(Si)�P

∗) for all i. Sup-
pose that the shift from Ai(·) to A′

i(·) is a positive shock, and define S1 such that
S1
i ∈ arg minSi (1+μi)Ki(Si�A

′
i(Si)�P

∗). Using the definition of positive technology shock,
we can apply Theorem 4 in Milgrom and Shannon (1994) to infer that S0

i ⊂ S1
i .

As in the proof of Theorem 1, define κ(P) = (1 + μi)minSi Ki(Si�A
′
i(Si)�P). Let

P0 = P∗ and define Pt = κ(Pt−1) for t ≥ 1. From the proof of Theorem 4, we know
that Pt is a decreasing sequence with P∗∗ ≤ limt→∞ Pt ≤ P∗. Since P∗∗ ≤ P∗, we apply
once more Theorem 4 of Milgrom and Shannon (1994) to obtain S∗∗

i = arg minSi (1 +
μi)Ki(Si�A

′
i(Si)�P

∗∗) ⊃ arg minSi (1 + μi)Ki(Si�A
′
i(Si)�P

∗) = S1
i ⊃ S0

i = S∗
i . We conclude

that S∗ ⊂ S∗∗. Q.E.D.

PROOF OF LEMMA 3: Rewrite real GDP as Y(t) = YN(t)

eπ(t)
, where YN(t) = ∑t

i=1 PiCi =
1 + ∑t

i=1 λi
μi

1+μi PiYi. We next show that logYN(t) = o(t), which then implies that
limt→∞

logY(t)
t

= − limt→∞
π(t)

t
as claimed.

Define the components of the production and cost functions that do not depend on
Ai(Si(t)) as

Fi
(
Xi(t)�Li(t)� Si(t)

) = 1(
1 −

∑
j∈Si(t)

αij

)1−∑
j∈Si(t) αij ∏

j∈Si(t)
α
αij
ij

Li(t)
1−∑

j∈Si(t) αij
∏
j∈Si(t)

Xij(t)
αij �

Ki

(
Si(t)�P(t)

) =
∏
j∈Si(t)

Pj(t)
αij �

Therefore, Pi(t)Yi(t)= (1 + μi)Fi(Xi(t)�Li(t)� Si(t))Ki(Si(t)�P(t)) which does not de-
pend on Ai(Si(t)).

Let us then define

Pi = (1 +μi)Ki(∅� ·)�
By the definition of K, we have that Ki(∅� ·)= (1 + μi)∏j∈∅ P

αij
j = 1 + μi. We showed in

Theorem 1 that P(t)≤ P . Furthermore, by Assumption 3, we have supi∈N Pi = supi∈N(1 +
μi)≤ (1 +μ0) for some μ0 ≥ 0. Thus, Pi(t)≤ 1 +μ0 for all t and all i≤ t.

Next, let Y i(Si(t)) be defined by the following system of equations:

Y i

(
Si(t)

) = Fi
({
Xij = Yj(Sj)

}
j∈Si(t)�Li = 1� Si(t)

)
= Bi(t)

∏
j∈Si(t)

Y j

(
Sj(t)

)αij �
where Bi(t) = 1

(1−∑
j∈Si(t) αij)

1−∑
j∈Si(t) αij ∏

j∈Si(t) α
αij
ij

. Clearly, the vector Y(S(t)) = (Y 1(S1(t))�

� � � �Y tSt(t)) is an upper bound on the vector of sectoral outputs, and thus Y
N
(t) =
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74 D. ACEMOGLU AND P. D. AZAR

1 + ∑t

i=1 λi
μi

1+μi PiY i(Si(t)) is an upper bound on nominal GDP, YN(t). Next, taking loga-
rithms, we have

y
(
S(t)

) = α(
S(t)

)
y
(
S(t)

) + b(t)�
where α(S(t)) is the input–output matrix for the production network S(t), y(S(t)) =
(logY 1(S(t))� � � � � logY t(S(t)))

′, and b(t)= (logB1(t)� � � � � logBt(t))′. Thus

y
(
S(t)

) = [
I − α(

S(t)
)]−1

b(t)�

In view of Assumption 5, the norm of the matrix [I − α(S(t))]−1 is less than 1
1−θ , and thus

for all S(t), we have

y
(
S(t)

) ≤ 1
1 − θb(t) for all S(t)�

Moreover, bi(t)= −∑
j∈Si(t) αij logαij − (1 − ∑

j∈Si(t) αij) log(1 − ∑
j∈Si(t) αij) can be inter-

preted as the entropy of a discrete random variable over {0�1� � � � � |Si|} that is equal to
αij with probability αij and equal to 0 with probability 1 − ∑

j∈Si αij . The maximum possi-
ble entropy of this random variable is log(|Si| + 1) ≤ log(t), obtained when αij = 1

|Si|+1 .

Thus yi(S(t)) ≤ 1
1−θ log(t), and hence Y i(S(t)) ≤ t

1
1−θ for all S(t). Then YN(t) = 1 +∑t

i=1 λi
μi

1+μi PiYi ≤ 1 + ∑t

i=1 λi
μi

1+μi PiY i ≤ 1 + t(1 + μ0)t
1

1−θ = 1 + (1 + μ0)t
1

1−θ+1. Taking
logarithms, we obtain

log
(
YN(t)

) ≤ log
(
1 + (1 +μ0)t

1
1−θ+1

)
�

and hence

lim
t→∞

log
(
YN(t)

)
t

≤ lim
t→∞

log
(
1 + (1 +μ0)t

1
1−θ+1

)
t

= 0�

This establishes that logYN(t)= o(t), and completes the proof. Q.E.D.

PROOF OF THEOREM 6: Let ε > 0 and T(ε) be such that, for all i ∈ N,
∑∞

j=T(ε) αij ≤ ε.
Recall that α is the entire matrix of input–output elasticities, while α(S) is the observed
matrix of input–output elasticities when the input–output network is given by S. Assump-
tion 5 tells us that if Si ⊃ {1� � � � �T (ε)} for all i, we will have

∑t

j=1 αij(S)≥ ∑t

j=1 αij − ε.
We next make use of the following lemma:

LEMMA A2: Let α and β be nonnegative matrices n× n matrices. Let A= (I −α)−1 and
B= (I −β)−1. If

• ‖α‖∞ ≤ θ, ‖β‖∞ ≤ θ for some θ < 1, and
• ∑n

j=1βij ≥ (
∑n

j=1αij)− ε for every row i,
then

∑n

j=1Bij ≥ (
∑n

j=1Aij)− 1
(1−θ)2 ε for every row i.

PROOF OF LEMMA A2: Let α�ij be the (i� j) element of the matrix α�. Since A =∑∞
�=0 α

�, B = ∑∞
�=0β

�, and
∑∞

�=1 �θ
�−1 = 1

(1−θ)2 , it suffices to show that, for all � ≥ 0, we
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ENDOGENOUS PRODUCTION NETWORKS 75

have
∑n

j=1β
�
ij ≥ (

∑n

j=1α
�
ij) − �θ�−1ε. We proceed by induction. The base case (� = 1) is

our assumption that
∑n

j=1βij ≥ (
∑n

j=1 αij) − ε. To prove the inductive case, assume we
have shown the hypothesis for �, and we want to show it for �+ 1. Write∑

j

β�+1
ij =

∑
j

∑
k

βikβ
�
kj =

∑
k

βik
∑
j

β�kj�

By induction, this is greater than or equal to∑
k

βik
∑
j

α�kj −
∑
k

βik�θ
�−1ε�

We now use the fact that
∑

k αik − ε ≤ ∑
k βik ≤ θ to infer that

∑
k βik

∑
j α

�
kj −∑

k βik�θ
�−1ε is bounded below by∑

k

αik
∑
j

α�kj − ε
∑
j

α�kj − θ�θ�−1ε�

The first term in the above expression is equal to
∑

j

∑
k αikα

�
kj = ∑

j α
�+1
ij . The second

term is bounded below by −ε‖α�‖∞ ≥ −εθ�. We conclude that∑
j

β�+1
ij ≥

∑
j

α�+1
ij − (�+ 1)θ�ε�

Adding up over all � ∈ N, we obtain

∑
j

Bij ≥
∑
j

Aij − 1
(1 − θ)2 ε�

Q.E.D.

From this lemma, we can infer that for any S ⊃ {1� � � � �T (ε)}, ∑t

j=1 Lij(S)≥ ∑t

j=1 Lij −
1

(1−θ)2 ε, which we will use in the proof that follows.

We first prove that lim inft→∞ − p∗
i (t)

t
∑t
j=1 Lij

≥ D. We will first show that this is the case

even if industry i chooses a suboptimal set of inputs corresponding to those with
the highest levels of log productivity (rather than the cost-minimizing bundles), and
then infer from this that it is also true for the equilibrium price sequence. Let us
define Smax

i (t) = arg maxSi⊃{1�����T (ε)} ai(Si), Smax(t) = {Smax
i (t)}ti=1, and define pmax

i (t) =
−∑t

j=1 Lij(S
max(t))(aj(S

max
j (t))− log(1 + μj)). The value ai(Smax

i (t)) is the maximum of
2t−1−T(ε) random variables drawn jointly from�i(t−1−T(ε)). Then Assumption 4 implies
that limt→∞

ai(S
max
i (t))

t−1−T(ε) =D almost surely. Since T(ε) is a constant independent of t, we have

limt→∞
ai(S

max
i (t))

t
= D almost surely. Since a countable intersection of almost sure events

happens almost surely, we also have limt→∞ mini≤t
ai(S

max
i (t))

t
= limt→∞ maxi≤t

ai(S
max
i (t))

t
=D

almost surely (where the min and max are over the set of industries). Furthermore, since
Smax
i (t) ⊃ {1� � � � �T (ε)}, we have

∑t

j=1 Lij(S
max(t)) ≥ ∑t

j=1 Lij − 1
(1−θ)2 ε. Plugging these
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76 D. ACEMOGLU AND P. D. AZAR

bounds into the definition of pmax
i , we obtain

−pmax
i (t)=

t∑
j=1

Lij

(
S(t)

)(
aj

(
Smax
j (t)

) − log(1 +μj)
)

≥ min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
) t∑
j=1

Lij

(
S(t)

)

≥ min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
)( t∑

j=1

Lij − 1
(1 − θ)2 ε

)
�

Dividing both sides by t
∑t

j=1 Lij , we obtain

− pmax
i (t)

t

t∑
j=1

Lij

≥
min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
)

t
− ε

min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
)

t(1 − θ)2
t∑
j=1

Lij

�

Using the fact that
∑t

j=1 Lij ≥ 1, this inequality can be written as

− pmax
i (t)

t

t∑
j=1

Lij

≥
min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
)

t
− ε

min
k≤t

(
ak

(
Smax
k (t)

) − log(1 +μk)
)

t(1 − θ)2 �

Taking lim inf on both sides, and using the fact that μk is a constant independent of t, we
obtain

lim inf
t→∞

− pmax
i (t)

t

t∑
j=1

Lij

≥D− εD 1
(1 − θ)2 �

Since ε is arbitrarily small, we conclude that

lim inf
t→∞

− pmax
i (t)

t

t∑
j=1

Lij

≥D�

With the same arguments as in the proof of Theorem 1, we also have that the function
κ(p) = (minS1 log(1 + μ1) + k1(a1(S1)� S1�p)� � � � �minSt log(1 + μt) + kt(at(St)� St�p))
has a smallest fixed point which gives the equilibrium log price vector p∗(t). Starting from
pmax(t), we can define a decreasing sequence pτ(t) = κ(pτ−1(t)) which converges to a
fixed point p(t) of κ. Since the equilibrium log price vector is the lowest fixed point of
κ, we have that p∗(t) ≤ p(t) ≤ pmax(t). Dividing by t

∑t

j=1 Lij and taking lim inf on both
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ENDOGENOUS PRODUCTION NETWORKS 77

sides, we conclude

lim inf
t→∞

− p∗
i (t)

t

t∑
j=1

Lij

≥D� (A13)

To prove that lim supt→∞
−p∗

i (t)

t
∑t
j=1 Lij

≤D, let us write −p∗
i (t)= ∑t

j=1 Lij(S(t))(aj(Sj(t))−
log(1 +μj))≤ maxk≤t(ak(Sk(t))− log(1 +μk))∑t

j=1 Lij . The value of maxk≤t(ak(Sk(t))+
log(1 +μk)) can be upper bounded by maxk≤t maxS′

k
(ak(S

′
k))− mink(log(1 +μk)). As we

argued above, limt→∞
maxk≤t maxS′

k
(ak(S

′
k
))

t
= D almost surely. Furthermore, mink≤t(log(1 +

μk)) is a constant independent of t. Dividing −p∗
i (t) by t

∑t

j=1 Lij and taking lim sup on
both sides, we obtain

lim sup
t→∞

− p∗
i (t)

t

t∑
j=1

Lij

≤ lim sup
t→∞

max
k≤t

max
S′
k

ak
(
S′
k

) − min
k≤t
(1 +μk)

t
≤D almost surely�

Combining this with (A13), we can thus conclude that

lim
t→∞

− p∗
i (t)

t

t∑
j=1

Lij

=D almost surely� (A14)

and thus

g∗ = lim
t→∞

(
−π(t)

t

)
=D

∞∑
i�j=1

βiLij almost surely�
Q.E.D.

PROOF OF THEOREM 7: Since ki(Si� ai(Si)�p) = −ai(Si) + ki(Si�p), equilibrium log
prices satisfy

p∗
i = log(1 +μi)− ai

(
S∗
i

) + ki
(
S∗
i �p

∗)�
and

S∗
i ∈ arg min

S
−ai(S)+ ki

(
S�p∗)�

Let b be a vector such that bi = log(1 +μi)− ai(Si). Then for any production network S,

p= b+ k(S�p)�

where k(S�p) is a vector-valued function whose ith coordinate is ki(Si�p). Since d logki
d logpj

≥
0 and by assumption

∑∞
j=1

d logki
d logpj

≤ θ for all i, each entry of the Jacobian of the function
�(p)= p− k(S�p) is greater than 1 − θ > 0, and less than or equal to 1. Let us denote
the Jacobian of k with respect to p when the network is given by S by Jk�S�p. Then the ma-
trix (I− Jk�S�p) is invertible, and all entries of (I− Jk�S�p)−1 are nonnegative (equivalently,
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78 D. ACEMOGLU AND P. D. AZAR

Jk�S�p is a P-matrix). From Gale and Nikaido (1965), there exists a globally defined func-
tion p(b�S) that is continuously differentiable in b such that p(b�S)−k(S�p(b�S))= b.
Taking derivatives with respect to b,

Jp�b�S − Jk�S�pJp�b�S = I�
where Jp�b�S is the Jacobian of p(b�S). We can write Jp�b�S = (I − Jk�S�p)

−1 and observe
that each entry of the matrix Jp�b�S is greater than or equal to 1, and less than or equal to

1
1−θ .

Then, for any b′ ≥ b ∈ R
t , define b(τ) = (1 − τ)b + τb′ for τ ∈ [0�1], and for any t-

dimensional vector γ such that γ ≥ 0 and
∑∞

i=1 γi = 1, define

π(τ�S)= γ′p
(
b(τ)�S

)
�

This function is differentiable defined on [0�1] with derivative γ′Jp�b�S(b′ −b). Then, from
the mean value theorem, there exists τ0 ∈ (0�1) such that

π(1� S)−π(0� S)= γ′Jp�b�S|b=b(τ0)

(
b′ − b)�

Since the coefficients of Jp�b�S are bounded between 1 and 1
1−θ , and b′ ≥ b, we have

γ′(b′ − b) ≤ π(1� S)−π(0� S)≤ 1
1 − θγ

′(b′ − b)� (A15)

Set S = S∗(t) (which is the equilibrium network at time t), b′
i = −ki(S∗

i �0), and bi =
log(1 +μi)− ai(S∗

i (t)). Then p(b�S∗)= p∗, where recall that p∗ is the equilibrium price
vector at time t. Moreover, we also have b′ + k(S∗�0) = 0, so that p(b′� S∗(t)) = 0, and
π(1� S∗(t))= 0. Then (A15) implies

γ′(b′ − b) ≤ −γ′p∗(t)≤ 1
1 − θγ

′(b′ − b)�
From Assumptions 3 and 4, we have that limt→∞

bi
t

= limt→∞
ai(Si(t))

t
= −D almost surely.

On the other hand, because S∗(t) is cost-minimizing, b′ ≥ −k((∅� � � � �∅)�0), and be-
cause the log cost function is nonincreasing in log prices, we also have b′ ≤
− limp→−∞ k(S∗(t)�p) = −�(t), where �(t) = log minLi :F(Xi�Li�S∗

i (t))=1Li. Finally, because
labor is essential from the first part of Assumption 5, there exists � such that �(t)≥ � for
all t ∈ N, and thus −k((∅� � � � �∅)�0) ≤ b′ ≤ −�. Dividing this inequality by t, and taking
the limit as t → ∞, we obtain limt→∞ b′

t
= 0, and b≤ b′ almost surely (as t → ∞).

Taking limits on both sides of (A15), we obtain

D

∞∑
i=1

γi = lim
t→∞

γ′(b′ − b)
t

≤ lim
t→∞

−γ
′p∗(t)
t

≤ lim
t→∞

1
1 − θγ

′(b′ − b)
t

= D

1 − θ�

Now setting γi = 1 and γj = 0 for all j �= i, we obtain

D

∞∑
i=1

γi ≤ lim
t→∞

−p
∗
i (t)

t
≤ D

1 − θ�
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ENDOGENOUS PRODUCTION NETWORKS 79

For the last part of the theorem, first note that with a similar argument using the Jaco-
bians as here, we can show that nominal GDP is bounded in this case also, and thus as in
Lemma 3, g∗ = limt→∞(−π(t)

t
). Then setting γ = β (with β as given in Assumption 2′), we

get

D

∞∑
i=1

βi =D≤ g∗ ≤ D

1 − θ
∞∑
i=1

βi = D

1 − θ�

establishing the desired result. Q.E.D.

PROOF OF THEOREM 8: The production function

Yi =L
1−∑

k∈Ri
∑
j∈Si�k αij

i

K∏
k=1

(
Ai�k(Si�k)

∏
j∈Si�k

X
αij
ij

)

can be recast as a production function with productivity termAi(Si)= ∏K

k=1Ai�k(Si�k). For
this production function, Assumption 4 is satisfied, with

lim
t→∞

ai
(
Si(t)

)
t

= lim
t→∞

∑
k

ai�k
(
Si�k(t)

)
t

=
K∑
k=1

Dk

almost surely. Applying Theorem 6 to this function, we obtain the desired result. Q.E.D.

PROOF OF LEMMA 4: The log unit cost of adopting set Si is ki(Si� ai(Si)�p) =∑
j∈Si αijpj −bj −ε(Si), where ε(Si) is distributed according to a Gumbel distribution with

variance parameter σ . Choosing Si to minimize ki(Si� ai(Si)�p) is equivalent to choosing
Si to maximize −ki(Si� ai(Si)�p)= −∑

j∈Si αijpj +bj + ε(Si). Part 1 then follows from the
same derivation as that of Lemma 1 in McFadden (1973).

Part 2 follows because

Pr(j ∈ Si|P)=

∑
Si :j∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′

∑
Si

∏
j′∈Si

ebjP
− αij′

σ
j′

=

∑
Si :j∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′

∑
Si :j∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′ +

∑
Si :j /∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′

=
ebjP

− αij
σ

j

∑
Si :j /∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′

ebjP
− αij
σ

j

∑
Si :j /∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′ +

∑
Si :j /∈Si

∏
j′∈Si

ebjP
− αij′

σ
j′

= ebj P
− αij
σ

j

1 + P− αij
σ

j

�

Q.E.D.

PROOF OF THEOREM 10: Part 1. Since
∑n

j=1 αij ≤ 1 for every i from Assumption 5′,
Ii(n) = 1

n

∑n

j=1αij(S(n)) ≤ 1
n
. Thus, for every ε > 0, we have ‖I(n)‖∞ ≤ 1

n
. This implies

that I(n) uniformly converges to 0.
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80 D. ACEMOGLU AND P. D. AZAR

Part 2. We can write Oj(n)= 1
n

∑n

i=1 αijI(i� j� n), where I(i� j� n) is an indicator function
that is equal to 1 if j ∈ Si(n) and 0 otherwise. Since I(i� j� n)≤ 1,

Oj(n)≤ 1
n

n∑
i=1

αij = αj�

This implies that lim supn→∞ Oj(n)=Oj ≤ αj for all j.
Part 3. Let P(n) be the price vector in economy E(n), and let Oj(n)|P(n) be the outde-

gree of j conditional on prices. From Lemma 4, the decisions of any two industries i, i′ on
whether or not to choose j as a supplier are independent given prices. Thus, the sequence
of random variables {I(i� j� n)|P(n)}ni=1 is a sequence of independent Bernoulli random

variables with Pr(I(i� j� n)|P(n)) = e
bj P

−αij
j

1+ebj P−αij
j

. The expected outdegree of firm j given a

fixed price vector P(n) is E[Oj(n)|P(n)] = 1
n

∑n

i=1 αij
e
bj P

−αij
j

1+ebj P−αij
j

. If P
−αij
j ≥ 1 for every j ∈ N,

then we have
e
bj P

−αij
j

1+ebj P−αij
j

≥ e
bj

1+ebj , and E[Oj(n)|P(n)] ≥ 1
n

∑n

i=1
αije

bj

1+ebj . Taking lim sup on both

sides, we obtain

lim sup
n→∞

E
[
Oj(n)|P(n)

] ≥ αje
bj

1 + ebj �

Recall that if X1� � � � �Xn are independent random variables in the interval [0�1], we
have the following Chernoff bound:

Pr

(∣∣∣∣∣1
n

n∑
i=1

Xi − 1
n

n∑
i=1

E[Xi]
∣∣∣∣∣ ≥ ε

)
≤ 2e−2nε2

�

Using this Chernoff bound and the conditional independence of each I(i� j� n)|P(n), we
get that for any ε > 0, we have Pr(|Oj(n)−E[Oj(n)|P(n)]| ≥ ε)≤ 2e−2nε2 . Using the first
Borel–Cantelli lemma (Lemma B2) and the fact that

∑∞
n=1 2e−2nε2

<∞, we conclude that
lim supn→∞ |Oj(n)−E[Oj(n)|P(n)]| ≤ 0 almost surely. Using the reverse triangle inequal-
ity and the fact that Oj(n)≥ 0, this becomes

lim sup
n→∞

E
[
Oj(n)|P(n)

] ≤ lim inf
n→∞

Oj(n)=Oj almost surely�

Finally, recall from the proof of Corollary 3 that lim supn→∞ maxj≤n
pj(n)

n
≤ 0 almost surely,

and thus lim supn→∞ maxj≤n Pj(n)−αij ≥ 1 almost surely (this result still holds, since the
assumptions imposed here are stronger versions of those in Theorem 6). Therefore,

lim infn→∞ minj≤n
e
bj P

−αij
j

1+ebj P−αij
j

≥ e
bj

e
1+bj almost surely, and consequently,

lim sup
n→∞

ebj

1 + ebj αj ≤ lim sup
n→∞

E
[
Oj(n)|P(n)

] ≤Oj

holds almost surely for all j ∈N.
Finally, note that if O were a degenerate distribution, then either Oj = 0 for all j or

Oj = ρ > 0 for all j. In the former case, we would have
∑∞

j=1 Oj = 0, which cannot be the
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ENDOGENOUS PRODUCTION NETWORKS 81

case because Oj > αj
e
bj

1+ebj and
∑∞

j=1
αje

bj

1+ebj > 0. In the latter case, we would have
∑∞

j=1 Oj =
∞, which cannot be the case because O ≤ α and

∑∞
j=1 αj ≤ 1. The argument that O cannot

be a degenerate distribution is analogous to the argument for O. Q.E.D.
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